Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

558results about "Control electrodes" patented technology

Electron-emitting device provided with pores that have carbon deposited therein

An electron-emitting device disclosed has stable electron emission characteristics with little variation, in high electron emission efficiency, in high definition, and at low driving voltage. The electron-emitting device disclosed is constructed in such structure that on a substrate there are a lower electrode, an insulating layer having pores, and an upper electrode stacked in this order, the insulating layer is an anodic oxide layer, and a carbon deposit is formed in the pores.
Owner:CANON KK

Thermionic emission device

A thermionic emission device includes an insulating substrate, and one or more grids located thereon. Each grid includes a first, second, third and fourth electrode down-leads located on the periphery thereof, and a thermionic electron emission unit therein. The first and second electrode down-leads are parallel to each other. The third and fourth electrode down-leads are parallel to each other. The first and second electrode down-leads are insulated from the third and fourth electrode down-leads. The thermionic electron emission unit includes a first electrode, a second electrode, and a thermionic electron emitter. The first electrode and the second electrode are separately located and electrically connected to the first electrode down-lead and the third electrode down-lead respectively. The insulating substrate comprises one or more recesses that further insulate the thermionic electron emitters from the substrate.
Owner:TSINGHUA UNIV +1

Thermionic electron emission device and method for making the same

ActiveUS20090167137A1Excellent thermal electron emitting propertyIncrease brightnessTube/lamp screens manufactureControl electrodesCarbon nanotubeElectron
A thermionic electron emission device includes an insulating substrate, and one or more grids located thereon. The one or more grids include(s) a first, second, third and fourth electrode down-leads located on the periphery thereof, and a thermionic electron emission unit therein. The first and second electrode down-leads are parallel to each other. The third and fourth electrode down-leads are parallel to each other. The first and second electrode down-leads are insulated from the third and fourth electrode down-leads. The thermionic electron emission unit includes a first electrode, a second electrode, and a thermionic electron emitter. The first electrode and the second electrode are separately located and electrically connected to the first electrode down-lead and the third electrode down-lead respectively. Wherein the thermionic electron emitter includes a carbon nanotube film structure.
Owner:TSINGHUA UNIV +1

Thermionic electron source

A thermionic electron source includes a substrate, at least two electrodes, and a thermionic emitter. The electrodes are electrically connected to the thermionic emitter. The thermionic emitter has a film structure. Wherein there a space is defined between the thermionic emitter and the substrate.
Owner:TSINGHUA UNIV +1

Triodes using nanofabric articles and methods of making the same

Vacuum microelectronic devices with carbon nanotube films, layers, ribbons and fabrics are provided. The present invention discloses microelectronic vacuum devices including triode structures that include three-terminals (an emitter, a grid and an anode), and also higher-order devices such as tetrodes and pentodes, all of which use carbon nanotubes to form various components of the devices. In certain embodiments, patterned portions of nanotube fabric may be used as grid / gate components, conductive traces, etc. Nanotube fabrics may be suspended or conformally disposed. In certain embodiments, methods for stiffening a nanotube fabric layer are used. Various methods for applying, selectively removing (e.g. etching), suspending, and stiffening vertically- and horizontally-disposed nanotube fabrics are disclosed, as are CMOS-compatible fabrication methods. In certain embodiments, nanotube fabric triodes provide high-speed, small-scale, low-power devices that can be employed in radiation-intensive applications.
Owner:NANTERO

Transparent electrode and preparation method thereof

Disclosed herein is a transparent electrode featuring the interposition of a nano-metal layer between a grid electrode on a transparent substrate and an electroconductive polymer layer, and a preparation method thereof. The transparent electrode can be produced in a continuous process at high productivity and low cost and can be applied to various display devices.
Owner:SHENZHEN CHINA STAR OPTOELECTRONICS TECH CO LTD

Method and ionizer for bipolar ion generation

An ionizer includes a high voltage AC generator, and a planar ion emitter mounted on an insulating substrate and having an array of planar needles that protrude from an edge of the substrate. The high voltage AC generator may be actuated by a switch having a pair of mutually insulated planar contacts located near an edge of the insulating substrate and configured to be contacted by an electrically conductive coil spring. The coil spring is supported by a slider that is moveable toward the ion emitter from an initial position wherein the planar contacts are shorted by the spring so as to actuate the high voltage AC generator. Continued movement of the spring collects dust in its coils while breaking the switch contacts and de-energizing the high voltage AC generator.
Owner:FILT AIR

Light-transmitting metal electrode having hyperfine structure and process for preparation thereof

The present invention provides a metal electrode transparent to light. The metal electrode comprises a transparent substrate and a metal electrode layer composed of a metal part and plural openings. The metal electrode layer continues without breaks, and 90% or more of the metal part continues linearly without breaks by the openings in a straight length of not more than ⅓ of the visible wavelength to use in 380 nm to 780 nm. The openings have an average diameter in the range of not less than 10 nm and not more than ⅓ of the wavelength of incident light, and the pitches between the centers of the openings are not less than the average diameter and not more than ½ of the wavelength of incident light. The metal electrode layer has a thickness in the range of not less than 10 nm and not more than 200 nm.
Owner:KK TOSHIBA

Field emission display

Provided is a field emission display, which includes: a cathode portion including row signal lines and column signal lines in a stripe form allowing matrix addressing to be carried out on a substrate, and pixels defined by the row signal lines and the column signal lines, each pixel having a field emitter and a control device which controls the field emitter with two terminals connected to at least the row signal line and the column signal line and one terminal connected to the field emitter; an anode portion having an anode electrode, and a phosphor connected to the anode electrode; and a gate portion having a metal mesh with a plurality of penetrating holes, and a dielectric layer formed on at least one region of the metal mesh, wherein the gate portion is disposed between the cathode portion and the anode portion to allow the surface where the dielectric layer is formed to be faced to the cathode portion and to allow electrons emitted from the field emitter to collide with the phosphor via the penetrating holes.
Owner:ELECTRONICS & TELECOMM RES INST

Display and display panel thereof

A display panel including a plurality of scan lines, a plurality of data lines, and a plurality of pixels is provided. The data lines are disposed substantially perpendicular to the scan lines Each of the pixels is electrically connected with the corresponding data line and the corresponding scan line and the pixels are arranged as an array. The data lines are grouped into a plurality of groups and each of the groups is disposed between two adjacent pixel columns and has N data lines, where N is a positive integer greater than or equal to 3. A portion of the data lines of at least a first group among the groups cross over a portion of the scan lines. The rest data lines of the first group cross over all the scan lines.
Owner:AU OPTRONICS CORP

Field emission display

A display having hot electron type electron sources displaying an image by a line sequential scanning scheme is provided to prevent poor brightness uniformity along scan lines. The hot electron type electron source is provided with a top electrode bus line serving as a scan line and a bottom electrode bus line serving as a data line. The top electrode bus line has a sheet resistance lower than that of the bottom electrode. The wire sheet resistance of the scam line can be reduced to several m / square. When forming a 40 inch large screen FED using the hot electron type electron sources, a voltage drop amount produced in the scan line can be suppressed below an allowable range. As a result, high quality image without poor brightness uniformity can be obtained.
Owner:HITACHI LTD

Field emission device

A field emission device including a cathode having an electric field emitter for emitting electrons, a field emission inducing gate for inducing electron emission, and an anode for receiving the emitted electrons. A field emission suppressing gate is interposed between the cathode and the field emission inducing gate for suppressing electron emission, so that problems such as gate leakage current, electron emission due to anode voltage, and electron beam spreading of the conventional field emission device are significantly overcome.
Owner:ELECTRONICS & TELECOMM RES INST

Image display device and driving method thereof

An image display device includes luminescence pixels arranged in rows and columns. The image display device includes a first signal line and a second signal line, first control lines, and at least two drive blocks. Each drive block is composed of luminescence pixels in at least two of the rows. Each luminescence pixel includes a luminescence element and a current controller. Each of the luminescence pixels that belong to a kth drive block further includes a first switch provided between the first signal line and the current controller. Each of the luminescence pixels that belong to a (k+1)th drive block further includes a second switch provided between the second signal line and the current controller. Each of the first control lines is connected to all of the luminescence pixels in one of the drive blocks and not connected to the luminescence pixels in a different drive block.
Owner:JOLED INC

Electronic emission device, electron emission display device having the same, and method of manufacturing the electron emission device

InactiveUS20080018228A1Low costImprove uniform brightnessControl electrodesDischarge tube luminescnet screensExoelectron emissionDisplay device
An electron emission device which can uniformly emit electrons and can be simply manufactured at a reduced cost, and a display apparatus having improved uniform brightness of pixels by using the electron emission device. In addition, a simple method of manufacturing the electron emission device. The electron emission device includes: a first substrate; a cathode electrode and an electron emission unit disposed on the first substrate; a gate electrode electrically insulated from the cathode electrode; an insulating layer disposed between the cathode electrode and the gate electrode to insulate the cathode electrode from the gate electrode; and an electron emission source including carbon nanotubes (CNTs) that contact the cathode electrode, wherein distances between the gate electrode and the tips of the CNTs are uniform.
Owner:SAMSUNG SDI CO LTD

Electron source

An electron source showing little surplus current even at a time of high angular intensity operation is provided. An electron source comprising an electron emitting portion, a suppressor electrode and an extractor electrode, wherein the electron emitting portion is present at a leading edge of an end of a single crystal rod having a shape comprising a first truncated cone portion or a cone portion, and a second truncated cone portion continuing therefrom. It is preferably the electron source, wherein the single crystal rod has an oxide of a metal element selected from the group consisting of Ca, Sr, Ba, Sc, Y, La, Ti, Zr, Hf and lanthanoide elements as a diffusion source, and the single crystal rod is made of tungsten or molybden of <100> orientation.
Owner:DENKA CO LTD

Field emission triode structure based on graphene

The invention relates to a field emission triode structure based on graphene. The field emission triode structure comprises a cathode substrate (1), a support body (7) and an anode (8), wherein the support body (7) is positioned on the cathode substrate (1), the anode (8) is positioned on the support body (7) and parallel to the cathode substrate (1), and the cathode substrate (1), the support body (7) and the anode (8) constitute a cavity; and the field emission triode structure also comprises a cathode electrode (2) positioned in the enclosed cavity, a field emission body (3) for emitting electron beams (9), an insulated dielectric layer (4), a grid electrode (5) and the graphene (6). The field emission triode structure based on the graphene, provided by the invention, can realize high-current uniform emission, has the capability of effectively separating emission of field emission current from acceleration and focusing of electronic beams and can be used for a cold cathode X-ray source, a microwave amplifier tube and a field emission display.
Owner:SOUTHEAST UNIV

Triode structure field emission display device using carbon nanotubes and method of fabricating the same

A field emission display device and a method of fabricating the same are provided. The field emission display device includes a substrate, a transparent cathode layer, an insulation layer, a gate electrode, a resistance layer, and carbon nanotubes. The transparent cathode layer is deposited on the substrate. The insulation layer is formed on the cathode layer and has a well exposing the cathode layer. The gate electrode is formed on the insulation layer and has an opening corresponding to the well. The resistance layer is formed to surround the surface of the gate electrode and the inner walls of the opening and the well so as to block ultraviolet rays. The carbon nanotube field emitting source is positioned on the exposed cathode layer. An alignment error between the gate electrode and the cathode is removed, and carbon nanotube paste is prevented from remaining during development, thereby preventing current leakage and short circuit between the electrodes and diode emission. Accordingly, the performance of the field emission display device can be improved.
Owner:SAMSUNG SDI CO LTD

Gated nanorod field emitter structures and associated methods of fabrication

ActiveUS20070029911A1High densitySimple and cost-effective and efficientControl electrodesDischarge tube main electrodesField emission deviceEtching
The present invention relates to gated nanorod field emission devices, wherein such devices have relatively small emitter tip-to-gate distances, thereby providing a relatively high emitter tip density and low turn on voltage. Such methods employ a combination of traditional device processing techniques (lithography, etching, etc.) with electrochemical deposition of nanorods. These methods are relatively simple, cost-effective, and efficient; and they provide field emission devices that are suitable for use in x-ray imaging applications, lighting applications, flat panel field emission display (FED) applications, etc.
Owner:GENERAL ELECTRIC CO

Method of curing using an electroluminescent light

Method of curing polymeric compositions using light from an electroluminescent light source. An electroluminescent wire light can be embedded into a curable polymer or adhesive composition and used for curing in circumstances in which UV or visible light from conventional lamps cannot reach the polymer or adhesive to be cured. It may also be used to cure polymer or adhesive coatings of unusual or irregular shapes. An electroluminescent wire light can be embedded in a curable adhesive or polymer compound around an irregular shape of boat hull components, and the emitted light used to cure the adhesive or polymer compound to bond the boat hull components.
Owner:3M INNOVATIVE PROPERTIES CO

Phosphor and light emitting device using the same

There is provided a phosphor emitting light of high brightness and having high weatherability, which has a composition represented by the following general formula:(M11−yRy)aMgM2bM3cOa+2b+(3 / 2)cX2wherein M1 is at least one element selected from the group consisting of Ca, Sr, Ba, Zn and Mn, M2 is at least one element selected from the group consisting of Si, Ge and Sn, M3 is at least one element selected from the group consisting of B, Al, Ga and In, X is at least one element selected from the group consisting of F, Cl, Br and I, R is at least one element selected from the group consisting of rare earth elements with Eu being an inevitable element, and y, a, b and c satisfy the following relationships of 0.0001≦y≦0.3, 7.0≦a<10.0, 3.0≦b<5.0 and 0≦c<1.0.
Owner:NICHIA CORP

Electron emission apparatus comprising electron-emitting devices, image forming apparatus and voltage application apparatus for applying voltage between electrodes

An electron emission apparatus can effectively suppress the adverse effect of electric discharges that can take place between the oppositely disposed electrodes of the apparatus to which a high voltage is applied by dividing the electrode adapted to have a higher electric potential into segments in order to reduce the electrostatic capacitance between the electrodes. In the case of an electron emission apparatus comprising electron-emitting devices, said plurality of electron-emitting devices are disposed such that the direction along which those that can be driven simultaneously are arranged is not parallel with the direction along which the electrode is divided into the electrode segments in order to reduce the variable range of the electric current that can flow in the segments.
Owner:CANON KK

Solid state vacuum devices and method for making the same

A solid state vacuum device (SSVD) and method for making the same. In one embodiment, the SSVD forms a triode device comprising a substrate having a cavity formed therein. The SSVD further comprises an anode positioned in the cavity of the substrate, a cathode suspended over the cavity of the substrate, and a grid positioned between the cathode and anode. In addition, the SSVD comprises a seal for creating a vacuum environment in the area surrounding the grid, cathode, and anode. Upon applying heat to the cathode, electrons are released from the cathode, passed through the grid, and received by the anode. In response to receiving the electrons, the anode produces a current. The current produced by the anode is controlled by a voltage applied to the grid. Other embodiments of the present invention provide diode, tetrode, pentode, and other higher order device configurations.
Owner:INNOSYS

Low voltage electron source with self aligned gate apertures, fabrication method thereof, and devices using the electron source

A method of fabricating an electron source having a self-aligned gate aperture is disclosed. A substrate is deposited on a first conductive layer. Over the first conductive layer an emitter layer is deposited. The emitter layer includes one or a plurality of spaced-apart nano-structures and a solid surface with nano-structures protruding above the surface. An insulator is conformally deposited over the emitter layer surface and forms a post from each protruding nano-structure. A second conductive layer is deposited over the insulator and the second conductive layer and the insulator are removed from the nano-structures such that apertures are formed in the second conductive layer and at least the ends of the nano-structures are exposed at the centers of said apertures.
Owner:TOLT ZHIDAN L
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products