Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1147 results about "Octane rating" patented technology

An octane rating, or octane number, is a standard measure of the performance of an engine or aviation fuel. The higher the octane number, the more compression the fuel can withstand before detonating (igniting). In broad terms, fuels with a higher octane rating are used in high-performance gasoline engines that require higher compression ratios. In contrast, fuels with lower octane numbers (but higher cetane numbers) are ideal for diesel engines, because diesel engines (also referred to as compression-ignition engines) do not compress the fuel, but rather compress only air and then inject fuel into the air which was heated by compression. Gasoline engines rely on ignition of air and fuel compressed together as a mixture, which is ignited at the end of the compression stroke using spark plugs. Therefore, high compressibility of the fuel matters mainly for gasoline engines. Use of gasoline with lower octane numbers may lead to the problem of engine knocking.

Pre-passivation process for a continuous reforming apparatus, and passivation process for a continuous reforming apparatus during the initial reacation

The present invention relates to a pre-passivation process for a continuous reforming apparatus prior to the reaction, or a passivation process for a continuous reforming apparatus during the initial reaction, comprising loading a reforming catalyst into the continuous reforming apparatus, starting the gas circulation and raising the temperature of a reactor, injecting sulfide into the gas at a reactor temperature ranging from 100-650° C., controlling the sulfur amount in the recycle gas within a range of 0.5-100×10−6 L / L so as to passivate the apparatus.The process of the present invention may also comprise the following steps:(1) loading a reforming catalyst into the continuous reforming apparatus, starting the gas circulation and raising the temperature of a reactor, feeding the reforming feedstock into the reaction system when the temperature of the reactor is increased to 300-460° C., introducing sulfide into the reaction system while or after the reforming feedstock is fed, controlling the ratio of the total sulfur amount introduced into the system to the reforming feedstock within the range of 0.5 μg / g-50 μg / g, reducing the content of sulfide introduced into the system when hydrogen sulfide concentration in the recycle gas reaches to 2.0 μL / L˜30 μL / L; and(2) maintaining the reforming reactor at a temperature of 460-490° C., controlling the ratio of the total sulfur amount introduced into the system to the reforming feedstock within the range of 0.2 μg / g-0.5 μg / g, adjusting the amount of the reforming feedstock to the design value of the apparatus, increasing the reforming reaction temperature to 490-545° C. according to the requirements on the octane number of the liquid product, and letting the reforming apparatus run under normal operating conditions.
Owner:CHINA PETROCHEMICAL CORP +1

Fuel management system for variable ethanol octane enhancehment of gasoline engines

Fuel management system for efficient operation of a spark ignition gasoline engine. Injectors inject an anti-knock agent such as ethanol directly into a cylinder of the engine. A fuel management microprocessor system controls injection of the anti-knock agent so as to control knock and minimize that amount of the anti-knock agent that is used in a drive cycle. It is preferred that the anti-knock agent is ethanol. The use of ethanol can be further minimized by injection in a non-uniform manner within a cylinder. The ethanol injection suppresses knock so that higher compression ratio and / or engine downsizing from increased turbocharging or supercharging can be used to increase the efficiency of the engine.
Owner:MASSACHUSETTS INST OF TECH

Fuel management system for variable anti-knock agent octane enhancement of gasoline engines

Fuel management system for efficient operation of a spark ignition gasoline engine. Injectors inject an anti-knock agent such as ethanol directly into a cylinder of the engine. A fuel management microprocessor system controls injection of the anti-knock agent so as to control knock and minimize that amount of the anti-knock agent that is used in a drive cycle. It is preferred that the anti-knock agent is ethanol. The use of ethanol can be further minimized by injection in a non-uniform manner within a cylinder. The ethanol injection suppresses knock so that higher compression ratio and / or engine downsizing from increased turbocharging or supercharging can be used to increase the efficiency of the engine.
Owner:MASSACHUSETTS INST OF TECH

Fuel injection system and method

A fuel injection system includes a first fuel injector that injects a lower-octane fuel into a combustion chamber of an internal combustion engine, and a second fuel injector that injects a higher-octane fuel into an intake passage of the engine. When the engine temperature is equal to or lower than a predetermined temperature during a start-up period of the internal combustion engine, fuel having the lower octane is injected via the first injector while prohibiting injection of the higher octane fuel via the second fuel injector.
Owner:TOYOTA JIDOSHA KK

Fuel injection system and method

A fuel injection system includes a first fuel injector that injects a lower-octane fuel into a combustion chamber of an internal combustion engine, and a second fuel injector that injects a higher-octane fuel into an intake passage of the engine. When the engine temperature is equal to or lower than a predetermined temperature during a start-up period of the internal combustion engine, fuel having the lower octane is injected via the first injector while prohibiting injection of the higher octane fuel via the second fuel injector.
Owner:TOYOTA JIDOSHA KK

Hydrogen and carbon monoxide enhanced knock resistance in spark ignition gasoline engines

A method for reducing required octane number and a spark ignition gasoline engine system with hydrogen-enhanced knock resistance. The method for reducing required octane number of gasoline needed to prevent knock includes the addition of hydrogen or hydrogen-rich gas containing carbon monoxide to gasoline. Octane number can be improved by 5 or more for a hydrogen energy fraction of 10%. The spark ignition gasoline engine system includes a spark ignition gasoline engine and a source of gasoline and hydrogen or hydrogen-rich gas. Apparatus is provided to supply the gasoline and the hydrogen or hydrogen-rich gas to the engine at a varying hydrogen or hydrogen-rich gas to gasoline ratio selected both to prevent knock and to ensure a desired level of combustion stability throughout a full range of engine operation. The engine system may be normally aspirated or boosted; the compression ratio may be high such as greater than 11 or below 11, and EGR may be added. The hydrogen or hydrogen-rich gas to gasoline ratio may be controlled as a function of boost pressure, torque, engine speed, or air / fuel mixture ratio.
Owner:HEYWOOD JOHN B +4

Onboard fuel separation apparatus for an automobile

An onboard fuel separation apparatus separates a material fuel (gasoline) into a high-octane fuel having a higher octane value than the material fuel and a low-octane fuel having a lower octane value than the material fuel using a separation membrane which selectively allows high-octane value components (such as aromatic components) permeate through the membrane. The apparatus increases the ratio of the amount of the high-octane value components permeating through the membrane to the amount of the high-octane value components contained in the material fuel by, (A) Controlling the temperature of the material fuel supplied to the membrane (B) Increasing partial pressure of the low-octane value components on the high-octane fuel side of the membrane and removing volatiles from the permeate, and (C) Bypassing volatiles in the material feed around the membrane.
Owner:EXXON RES & ENG CO +1

Method for producing aromatic hydrocarbon by adopting raw materials containing methanol

The invention discloses a method for producing aromatic hydrocarbon by adopting raw materials containing methanol. The raw material containing methanol comprises the methanol and Fischer-Tropsch synthesis naphtha. In the method, the raw materials containing methanol and a catalyst undergo a contact reaction under the condition of producing the aromatic hydrocarbon by using the methanol. By adopting the method disclosed by the invention, the problem that great removed heat is needed to be adopted in the prior art is solved; and the method has the advantages of simple flow and simpleness and convenience for operation. By adopting the method provided by the invention and a good method for processing and utilizing Fischer-Tropsch synthesis naphtha components, aromatic hydrocarbon products are produced or the octane value of the Fischer-Tropsch synthesis naphtha components is increased to gasoline mediated components with a high octane value.
Owner:CHINA NAT OFFSHORE OIL CORP +1

Process for producing liquid fuel from carbon dioxide and water

A process for producing high octane fuel from carbon dioxide and water is disclosed. The feedstock for the production line is industrial carbon dioxide and water, which may be of lower quality. The end product can be high octane gasoline, high cetane diesel or other liquid hydrocarbon mixtures suitable for driving conventional combustion engines or hydrocarbons suitable for further industrial processing or commercial use. Products, such as dimethyl ether or methanol may also be withdrawn from the production line. The process is emission free and reprocesses all hydrocarbons not suitable for liquid fuel to form high octane products. The heat generated by exothermic reactions in the process is fully utilizes as is the heat produced in the reprocessing of hydrocarbons not suitable for liquid fuel.
Owner:CRI EHF

Internal combustion engine system

The present invention provides an internal combustion engine system which uses a blended fuel of gasoline and ethanol, operates with high efficiency, and can inhibit nitrogen oxide and the like from being discharged. The internal combustion engine system comprises: a fuel tank 3 that accommodates a blended fuel having an octane number of 80 to 100, which has been prepared by blending gasoline having the octane number of 30 to 85 and ethanol into a weight ratio between 9:1 and 6:4; separating means 4 for adding water to the blended fuel to separate the blended fuel into the gasoline and an ethanol-water mixture liquid; reforming means 8 for reforming one part of the ethanol-water mixture liquid to produce a mixture liquid of diethyl ether and water; and fuel injectors 10a, 10b and 10c which independently inject each of the gasoline, the ethanol-water mixture liquid and the mixture liquid of diethyl ether and water. The internal combustion engine system conducts spark ignition combustion when a load is high, and conducts homogeneous charge compression ignition combustion when the load is low.
Owner:HONDA MOTOR CO LTD

Internal combustion engine system

An internal combustion engine system uses a blended fuel of gasoline and ethanol, operates with high efficiency, and can inhibit nitrogen oxide and the like from being discharged. The internal combustion engine system includes: a fuel tank 3 that accommodates a blended fuel having an octane number of 80 to 100, which has been prepared by blending gasoline having the octane number of 30 to 85 and ethanol into a weight ratio between 9:1 and 6:4; A separating device for adding water to the blended fuel to separate the blended fuel into the gasoline and an ethanol-water mixture liquid; A reforming device for reforming one part of the ethanol-water mixture liquid to produce a mixture liquid of diethyl ether and water; and fuel injectors which independently inject each of the gasoline, the ethanol-water mixture liquid and the mixture liquid of diethyl ether and water.
Owner:HONDA MOTOR CO LTD

Catalytic conversion method and apparatus for upgrading poor gasoline

A catalytic converting process for upgrading poor-quality gasoline with high olefine content incldues a conventional catalytic cracking step for heavy oil and a catalytic converting step for upgrading said gasoline. It is characterized by in that two steps a common catalyst regenerator and a same catalyst are used. It can decrease olefine content by 15-50 vol% and S content by 5-30% and increase RON by 0.2-2 units.
Owner:SINOPEC LUOYANG PETROCHEM ENG CORP

Method of gasoline desulfurization

A process for desulfurizing gasoline includes such steps as dividing raw gasoline into light gasoline fraction and heavy gasoline fraction, hydrodesulfurizing the heavy one, separating gas phase from the resultant by high-pressure separator, mixing residual liquid with fresh H2, hydrodesulfurizing again, separating H2-enriched gas by said separator for cyclic use, and stabilizing in stabilizing tower to obtain qualified product.
Owner:CHINA PETROLEUM & CHEM CORP +1

Sorbent for reducing sulfur content in hydrocarbon oils

The invention relates to a sorbent for reducing sulfer content in hydrocarbon oil, which comprises 1 to 30 weight percent of rare earth faujasite, 5 to 40 weight percent of active metal oxide and 30 to 94 weight percent of carrier, wherein the carrier comprises alumina and zinc oxide. The mixture of the rare earth faujasite and the carrier is preformed into porous heat-resistant solid particles which are introduced with the metal active ingredient to prepare the sorbent; sulfer-containing light hydrocarbon oil raw material and hydrogen donors enter a reactor filled with the sorbent for separating reaction; materials and products after the separating reaction are sent to a subsequent separation system for product separation; sorbent to be regenerated after the reaction is burnt to be regenerated after steam stripping; and the regenerated sorbent is reduced by the hydrogen donors and returned to the reactor for recycling. The sorbent realizes deep removal of sulfer in the light hydrocarbon oil; meanwhile, the product gasoline has high octane number, low benzene content and high strength.
Owner:CHINA PETROLEUM & CHEM CORP +1

Efficient coupling hydro-upgrading method for producing gasoline with ultra-low sulfur and high octane number

The invention relates to an efficient coupling hydro-upgrading method for producing gasoline with ultra-low sulfur and a high octane number. The method comprises the following steps of: distilling inferior full cut gasoline at 50-90 DEG C to obtain light cut gasoline and heavy cut gasoline; making the light cut gasoline contact with a hydrocarbon multi-branched isomerization catalyst; making the heavy cut gasoline contact with a selective hydrogenation desulfurization catalyst and a complement desulfurization isomerization / aromatization catalyst sequentially; and finally, mixing the treated light cut gasoline with the treated heavy cut gasoline to obtain the gasoline with the ultra-low sulfur and the high octane number. The method further comprises the step of: before the distillation, making the inferior full cut gasoline contact with a hydro-selective desulfurization alcohol catalyst, or, before making the light cut gasoline contact with a hydrocarbon multi-branched isomerization catalyst, making the light cut gasoline contact with the hydro-selective desulfurization alcohol catalyst. The efficient coupling hydro-upgrading method is suitable for the hydro-upgrading treatment of inferior gasoline with ultrahigh sulfur and high olefin, reduces the sulfur content after the upgrading treatment to below 5mu g / g (no sulfur substantially) and can maintain the octane number and higher yield of products.
Owner:CHINA UNIV OF PETROLEUM (BEIJING)

High octane number gasolines and their production using a process associating hydro-isomerization and separation

The invention provides a high octane number gasoline pool comprises at least 2% of di-branched paraffins containing 7 carbon atoms, and a process for producing this gasoline pool by hydro-isomerizing a feed constituted by a C5 to C8 cut which comprises at least one hydro-isomerization section and at least one separation section, in which the hydro-isomerization section and at least one separation section, in which the hydro-isomerization section comprises at least one reactor. The separation section comprises at least one unit and produces at least two streams: a first stream which is rich in di- and tri-branched paraffins, and possibly in naphthenes and aromatic compounds which is sent to the gasoline pool; and in a first version of the process, a second stream is produced which is rich in straight-chain and mono-branched paraffins which is recycled to the inlet of the hydro-isomerization section, while in a second version of the process, a second flux is produced which is rich in straight-chain paraffins which is recycled to the inlet of a first hydro-isomerization section and a third stream is produced which is rich in mono-branched paraffins which is recycled to the inlet of a second hydroisomerization section.
Owner:INST FR DU PETROLE

Production method for ultra-low sulfur and high-octane number gasoline

The invention relates to a production method for ultra-low sulfur and high-octane number gasoline. The method comprises the following steps of: filling a poor-quality full range gasoline raw material in a reaction distillation column to contact the material with a sulfoether catalyst to perform a sulfur ether reaction and fraction cutting so that low-boiling point sulfides, such as thiol and thiophene, are converted into high-boiling point sulfoether which is then transferred into heavy fraction gasoline, wherein the cutting fractionation temperature of light fraction gasoline and the heavy fraction gasoline is 50 to 90 DEG C; contacting the light fraction gasoline with a hydrocarbon highly branched isomerization catalyst; contacting the heavy fraction gasoline with a selective hydrodesulfurization catalyst and a desulfurization-hydrocarbon isomerization / aromatization catalyst; and mixing the treated light fraction gasoline and the heavy fraction gasoline to obtain the ultra-low sulfur and high-octane number gasoline. The method is suitable for modifying poor-quality gasoline, can reach better desulfurization and olefin reduction effects on ultra-high sulfur and high-olefin poor-quality catalytic gasoline, and can maintain or increase the octane number of the product and keep a higher product yield after reaction.
Owner:CHINA UNIV OF PETROLEUM (BEIJING)

Control apparatus and control method for internal combustion engine

InactiveUS7047940B2Reduces the possibility of) an excessive increase in an exhaust system temperaturePrevent over-boostingElectrical controlInternal combustion piston enginesExternal combustion engineIgnition timing
A control apparatus stops supply of a fuel to an engine (a) when a value of a parameter relating to a misfire of the engine satisfies a misfire condition that is set based on an octane value of the fuel, or (b) when it is determined that a misfire may occur if an increased amount of the fuel is supplied to the engine in the case where ignition timing of the engine is retarded based on an octane value of the fuel, and the amount of the fuel is increased according to a retard amount of the ignition timing.
Owner:TOYOTA JIDOSHA KK

Aromatization modifying catalyst for catalytic gasoline and preocess

The present invention relates to a technological process for producing low-sulfur low-olefin clean gasoline by using catalytic cracked gasoline and catalyst used by said process. Said invention adopts hydrofinishing and aromatization combined process, in which the aromatization adopts small-grain hydrogen type molecular sieve catalyst including IA group metal, transition metal and lanthanide series rare-earth metal oxide, and the crystal grain size of the molecular sieve is in the range of 20nm-800 nm. Said invented catalyst can reduce cracking reaction and can raise the yield of the gasoline.
Owner:CHINA PETROLEUM & CHEM CORP +1

Sorbent for reducing sulfur content of light hydrocarbon oil

The invention provides a sorbent used for reducing the content of sulfur in light hydrocarbon oil. According to weight percentage, the sorbent comprises 1-30 percent of phosphorus-modified rare earth faujasite, 5-40 percent of active metal oxide and 30-94% of carrier; wherein, the carrier comprises alumina and zinc oxide; the rare earth faujasite is modified by phosphorus and is pre-formed into porous heat-resistance solid grains together with carrier mixture; subsequently, the active metal oxide is led into the solid grains, thus preparing the sorbent; the light hydrocarbon oil raw material containing the sulfur and hydrogen donor enter a reactor filled with the sorbent; the materials are separated after reaction; the reaction products are sent to a subsequent separation system so that the product is separated; the sorbent to be regenerated after reaction is stripped, burned and regenerated; and the regenerated sorbent is reduced by the hydrogen donor and subsequently returns to the reactor so as to be circularly used. The sorbent realizes that the sulfur of light hydrocarbon oil is deeply removed, and simultaneously, the octane number of the outcome gasoline is higher, while thebenzene content is lower and the strength is higher.
Owner:CHINA PETROLEUM & CHEM CORP +1

Modifying method for naphtha and light hydrocarbon aromatization

A modifying method for naphtha and light hydrocarbon aromatization comprises: contacting naphtha and C3-C5 light hydrocarbon with aromatization catalyst in the presence of hydrogen-containing gas to carry out aromatization modifying reaction, wherein the reaction temperature is 250-600 DEG C, and the volume ratio of hydrogen to naphtha is 20-400. The method can convert naphtha with low octane value and low-carbon hydrocarbon into gasoline component with high octane value and excellent liquefied gas, the final distilling point of liquid product and the carbon-accumulating speed of catalyst areobviously reduced, and the service life of catalyst is prolonged.
Owner:CHINA PETROLEUM & CHEM CORP +1

Deep desulfurization method for catalytically cracked gasoline

The invention provides a gasoline fraction solvent extraction desulfurization method comprising the steps of enabling a gasoline fraction to enter from the lower middle part of an extraction tower, enabling a solvent to enter from the top of the extraction tower, filling saturated C5 into a reflux device at the bottom of the extraction tower, controlling the temperature of the top of the extraction tower at 55-100 DEG C, the temperature of the bottom of the extraction tower at 40-80 DEG C, the pressure of the top of the extraction tower at 0.2-0.7MPa, the solvent to gasoline fraction ratio at 1.0-5.0 and the saturated C5 to gasoline fraction feeding ratio at 0.1-0.5, ejecting the extracted and desulfurized gasoline fraction out of the extraction tower, and washing to obtain a desulfurized gasoline fraction; discharging the solvent from the bottom of the extraction tower, separating a C5-contained light component, a sulfur-rich component, water and the solvent, returning the light component to the reflux device of the extraction tower, returning the water to the washing step, and returning the solvent to the top of the extraction tower, wherein sulfides, aromatic hydrocarbons and the C5 are extracted by the solvent. The invention also provides a deep desulfurization method for catalytically cracked gasoline. The solvent extraction desulfurization method is flexibly combined with the traditional desulfurization technology used by an enterprise, so that the deep desulfurization is realized, and meanwhile, the octane value loss of the gasoline fraction is remarkably reduced.
Owner:HEBEI REFINING TECH CO LTD

Combination of mild hydrotreating and hydrocracking for making low sulfur diesel and high octane naphtha

ActiveUS20100116712A1Suppresses hydrogenation functionIncreasing aromatic retentionTreatment with hydrotreatment processesHydrocarbon oils refiningNaphthaPtru catalyst
Methods are disclosed for the hydrotreating and hydrocracking of highly aromatic distillate feeds such as light cycle oil (LCO) to produce ultra low sulfur gasoline and diesel fuel. Optimization of hydrotreater severity improves the octane quality of the gasoline or naphtha fraction. In particular, the operation of the hydrotreater at reduced severity to allow at least about 20 ppm by weight of organic nitrogen into the hydrocracker feed is shown to lead to these important benefits. Post-treating of the hydrocracker effluent over an additional hydrotreating catalyst bed may be desired to meet specifications for ultra low sulfur fuel components.
Owner:UOP LLC

Renewable engine fuel

The present invention provides fully renewable engine fuels derived completely from biomass sources. The fully renewable engine fuel is comprised of one or more low carbon number esters, one or more pentosan-derivable furans, one or more aromatic hydrocarbon, one or more C4-C10 straight chain alkanes derivable from polysaccharides, and one or more bio-oils. In addition, the fuel may contain triethanolamine. Such a lower octane renewable fuel may be utilized, for example, in automobile fuel, 100 LL aviation fuel applications, and turbine engine applications. These ethanol-based, fully renewable fuels may be formulated to have a wide range of octane values and energy, and may effectively be used to replace 100LL aviation fuel (known as AvGas), as well as high octane, rocket, diesel, and turbine engine fuels.
Owner:SWIFT ENTERPRISES

Catalytic conversion method for hydrocarbon oil raw material

The invention discloses a catalytic conversion method for a hydrocarbon oil raw material. The hydrocarbon oil raw material contacts the catalytic cracking catalyst in a catalytic cracking reactor, the reaction oil gas and a spent catalyst are separated, then the spent catalyst is made steam stripping and regeneration and then returns to the catalytic cracking reactor for repeated use, the reaction oil gas is fractionated to obtain dry gas, liquefied gas, gasoline, light circulating oil, heavy circulating oil and heavy oil; the light circulating oil and any diesel fraction are cut into the light fraction of the light circulating oil and the heavy fraction of the light circulating oil; the heavy fraction of the light circulating oil is mixed with the heavy circulating oil and contacts the hydrogen and the hydrorefining catalyst, the reaction effluent is separated to obtain gas, naphtha and hydrogenated diesel, the hydrogen is reclaimed and then is circularly used; the light fraction of the light circulating oil independently or the light fraction of the light circulating oil along with the hydrogenated diesel returns to the catalytic cracking reactor. The method converts the catalytic cracking circulating oil into the gasoline with low olefin content and high octane value, and improves the yield of the gasoline and the yield of the propylene.
Owner:CHINA PETROLEUM & CHEM CORP +1

Selective hydrodesulfurization catalyst and preparation method thereof

The invention relates to a selective hydrodesulfurization catalyst contains cobalt and molybdenum as active components. The selective hydrodesulfurization catalyst is characterized in that silicon oxide and aluminum oxide are used as carriers of the catalyst; based on the total weight of 100%, the catalyst comprises 2-6wt% of cobalt oxide, 9-15 wt% of molybdenum oxide, 2-8wt% of alkaline earth metal oxide, 2-6wt% of phosphorus oxide, 3-5wt% of alkali metal oxide, 2-6wt% of silicon oxide and 54-80 wt% of aluminum oxide; and the catalyst has the specific surface area of 200-300m<2> / g and the pore volume of 0.5-0.7mL / g. The catalyst has high hydrogenation activity and selectivity, good stability, low research octane number loss and high liquid yield. The catalyst is suitable for selective hydrodesulfrization of low-quality gasoline and is particularly suitable for selective hydrodesulfrization of low-quality FCC (Family Car China) gasoline.
Owner:PETROCHINA CO LTD

Renewable Engine Fuel

The present invention provides fully renewable engine fuels derived completely from biomass sources. In one embodiment the fully renewable engine fuel is comprised of one or more low carbon number esters, one or more pentosan-derivable furans, one or more aromatic hydrocarbon, one or more C4-C10 straight chain alkanes derivable from polysaccharides, and one or more bio-oils. In addition, the fuel may contain triethanolamine. Such a lower octane renewable fuel may be utilized, for example, in automobile fuel, 100 LL aviation fuel applications, and turbine engine applications. These ethanol-based, fully renewable fuels may be formulated to have a wide range of octane values and energy, and may effectively be used to replace 100 LL aviation fuel (known as AvGas), as well as high octane, rocket, diesel, and turbine engine fuels. In another embodiment, there is provided a synthetic high octane aviation fuel comprising isopentane and mesitylene, and process of producing same from a biomass.
Owner:SWIFT ENTERPRISES

Cracking auxiliary agent for raising density of propylene

ActiveCN1796496AAct as matrix materialPlay a cohesiveCatalytic crackingOxidation stateCobalt
This invention describes a pyrolysis assistant for increasing the propylene concentration, which, measured on dry basis, comprises 10-65 wt.% of modified ZSM-5 molecular sieve, 0-60 wt.% of clay, 15-60 wt.% of inorganic oxide binder, 0.5-15 wt.% of one or several metal additives selected from VIIIB group metals and 2-25 wt.% of phosphorus additive, wherein the said ZSM-5 molecular sieve is modified with phosphorus and a metal selected from ferrum, cobalt or nickel, whose anhydrous chemical formulation is (0-0.3)Na2Oíñ(0.5-5)Al2O3íñ(1.3-10)P2O5íñ(0.7-15)MxOyíñ(70-97)SiO2, wherein x represents the molecular number of M and y represents the number needed for the oxidation state of M. The said metal additive and phosphorus additive are both measured by their oxides. The process of this invention can increase the yield of the catalytic pyrolytic liquefied gas, the octane number of the catalytic pyrolytic gasoline, as well as the propylene concentration in the liquefied gas.
Owner:CHINA PETROLEUM & CHEM CORP +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products