Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

5055 results about "Liquid fuel" patented technology

Liquid fuels are combustible or energy-generating molecules that can be harnessed to create mechanical energy, usually producing kinetic energy; they also must take the shape of their container. It is the fumes of liquid fuels that are flammable instead of the fluid. Most liquid fuels in widespread use are derived from fossil fuels; however, there are several types, such as hydrogen fuel (for automotive uses), ethanol, and biodiesel, which are also categorized as a liquid fuel. Many liquid fuels play a primary role in transportation and the economy.

Synthesis of liquid fuels and chemicals from oxygenated hydrocarbons

Processes and reactor systems are provided for the conversion of oxygenated hydrocarbons to hydrocarbons, ketones and alcohols useful as liquid fuels, such as gasoline, jet fuel or diesel fuel, and industrial chemicals. The process involves the conversion of mono-oxygenated hydrocarbons, such as alcohols, ketones, aldehydes, furans, carboxylic acids, diols, triols, and / or other polyols, to C4+ hydrocarbons, alcohols and / or ketones, by condensation. The oxygenated hydrocarbons may originate from any source, but are preferably derived from biomass.
Owner:VIRENT

Inhalation device and heating unit therefor

The invention relates to a heating unit for an inhalation device for the inhalation administration of an inhalation mixture of air and at least one additive material, having a fuel storage (252) which is filled or can be filled with a thermally combustible solid or liquid fuel (258), and with a combustion chamber (256) for the combustion of the fuel (258), which is essentially sealed from the surroundings by a combustion chamber wall (222). The invention further relates to an inhalation device (210) with such a heating unit.According to the invention, the combustion chamber (256) is designed for forming a flame, and the combustion chamber wall (222) has at least some micro openings (224). The micro openings are designed in such a way that the sum of the outer side lengths of all micro openings (224) is at least 140 mm, and the sum of the outer side lengths of the micro openings (224) per surface in the area of the combustion chamber wall (222) averages at least 80 mm / cm2.Application as cigarette substitute or as aid for nicotine withdrawal.
Owner:SILLER FRIEDRICH

Synthesis of liquid fuels and chemicals from oxygenated hydrocarbons

Processes and reactor systems are provided for the conversion of oxygenated hydrocarbons to hydrocarbons, ketones and alcohols useful as liquid fuels, such as gasoline, jet fuel or diesel fuel, and industrial chemicals. The process involves the conversion of mono-oxygenated hydrocarbons, such as alcohols, ketones, aldehydes, furans, carboxylic acids, diols, triols, and / or other polyols, to C4+ hydrocarbons, alcohols and / or ketones, by condensation. The oxygenated hydrocarbons may originate from any source, but are preferably derived from biomass.
Owner:VIRENT

Methods and devices for the production of Hydrocarbons from Carbon and Hydrogen sources

Devices and methods are described for converting a carbon source and a hydrogen source into hydrocarbons, such as alcohols, for alternative energy sources. The influents may comprise carbon dioxide gas and hydrogen gas or water, obtainable from the atmosphere for through methods described herein, such as plasma generation or electrolysis. One method to produce hydrocarbons comprises the use of an electrolytic device, comprising an anode, a cathode and an electrolyte. Another method comprises the use of ultrasonic energy to drive the reaction. The devices and methods and related devices and methods are useful, for example, to provide a fossil fuel alternative energy source, store renewable energy, sequester carbon dioxide from the atmosphere, counteract global warming, and store carbon dioxide in a liquid fuel.
Owner:PRINCIPLE ENERGY SOLUTIONS

Synthesis of liquid fuels from biomass

Processes and reactor systems are provided for the conversion of oxygenated hydrocarbons to paraffins useful as liquid fuels. The process involves the conversion of water soluble oxygenated hydrocarbons to oxygenates, such as alcohols, furans, ketones, aldehydes, carboxylic acids, diols, triols, and / or other polyols, followed by the subsequent conversion of the oxygenates to paraffins by dehydration and alkylation. The oxygenated hydrocarbons may originate from any source, but are preferably derived from biomass.
Owner:VIRENT

Synthesis of liqiud fuels and chemicals from oxygenated hydrocarbons

Processes and reactor systems are provided for the conversion of oxygenated hydrocarbons to hydrocarbons, ketones and alcohols useful as liquid fuels, such as gasoline, jet fuel or diesel fuel, and industrial chemicals. The process involves the conversion of mono-oxygenated hydrocarbons, such as alcohols, ketones, aldehydes, furans, carboxylic acids, diols, triols, and / or other polyols, to C4+ hydrocarbons, alcohols and / or ketones, by condensation. The oxygenated hydrocarbons may originate from any source, but are preferably derived from biomass.
Owner:VIRENT

Process to produce biofuels from biomass

Biofuels can be produced by: (i) providing a biomass containing celluloses, hemicelluloses, lignin, nitrogen compounds and sulfur compounds; (ii) contacting the biomass with a digestive solvent to form a pretreated biomass containing carbohydrates; (iii) contacting the pretreated biomass with hydrogen in the presence of a supported hydrogenolysis catalyst containing (a) sulfur, (b) Mo or W, and (c) Co and / or Ni incorporated into a suitable support to form a plurality of oxygenated intermediates, and (vi) processing at least a portion of the oxygenated intermediates to form a liquid fuel.
Owner:SHELL OIL CO

Biomass fast pyrolysis system utilizing non-circulating riser reactor

A biomass fast pyrolysis system for conversion of biomass vegetation to synthetic gas and liquid fuels includes: a) a non-circulating riser reactor for pyrolysis of biomass vegetation feedstock utilizing a heat carrier, the non-circulating riser reactor being physically structured and adapted to have a rate of reaction of at least 8,000 biomass vegetation feedstock lbs / hr / ft2, utilizing a ratio of heat carrier to biomass vegetation feedstock of about 7:1 to about 11.5:1, the riser reactor having a base input region at its bottom, a central reaction region and an output region at its top, the riser reactor including a cyclone disengager at its output region for separation of pyrolysis resulting char and heat carrier from the pyrolysis product gases, the cyclone disengager having an output downcomer and an output upcomer, the cyclone disengager output downcomer being connected to and feeding into a side combustor unit, the riser reactor being a non-circulating riser reactor in that the heat carrier is not returned directly to the riser reactor from the cyclone disengager and travels first down the cyclone disengager output downcomer to the side combustor unit; and, b) the side combustor unit for combusting pyrolysis resultant char and reheating the heat carrier the side combustor having a heat carrier downcomer connected to the base input region of the riser reactor.
Owner:INNOVATIVE ENERGY GLOBAL

Gaseous and liquid fuel injector

A hydraulically actuated dual fuel injector for an internal combustion engine. More particularly, the application pertains to a hydraulically actuated injector for injecting controlled quantities of a first fuel and of a second fuel into an internal combustion diesel engine at different times. A dual fuel injector comprising: (a) an injector body; (b) an inlet port in the injector body for enabling pressurized hydraulic fluid from a hydraulic fluid source to be introduced into the interior of the injector body, the hydraulic fluid being of sufficient pressure to maintain injection valves in the injector body in a closed position until actuated; (c) a first inlet port in the injector body for enabling a first fuel to be introduced into the interior of the injector body; (d) a first injection valve in the injector body connected to the second inlet port for controlling injection of the first fuel from the injector through a first fuel ejection port; (e) a second inlet port in the injector body for enabling a second fuel to be introduced into the interior of the injector body; (f) a second injection valve in the injector body connected to the second inlet port for controlling injection of the second fuel from the injector through a second fuel ejection port; (g) a first control valve which causes the hydraulic fluid to actuate the first injection valve; (h) a second control valve which causes the hydraulic fluid to actuate the second injection valve; (i) a metering device in the injector body for metering the amount of first fuel injected by the first injection valve; and (j) a seal in the injector body which prevents leakage of the second fuel into the first fuel.
Owner:WESTPORT POWER

Hydropyrolysis of biomass for producing high quality liquid fuels

A self-sustaining process for producing high quality liquid fuels from biomass in which the biomass is hydropyrolyzed in a reactor vessel containing molecular hydrogen and a deoxygenating catalyst, producing a partially deoxygenated hydropyrolysis liquid, which is hydrogenated using a hydroconversion catalyst, producing a substantially fully deoxygenated hydrocarbon liquid and a gaseous mixture comprising CO and light hydrocarbon gases (C1-C3). The gaseous mixture is reformed in a steam reformer, producing reformed molecular hydrogen, which is then introduced into the reactor vessel for hydropyrolizing the biomass. The deoxygenated hydrocarbon liquid product is further separated to produce diesel fuel, gasoline, or blending components for gasoline and diesel fuel.
Owner:GAS TECH INST

Dual fuel engine system

A dual fuel system employs a liquid fuel supply subsystem and a gaseous fuel supply subsystem for an engine. The liquid fuel supply subsystem supplies liquid fuel to the engine and an electronic control module is configured to control, via one or more liquid fuel control signals, the amount of liquid fuel supplied to the engine based on one or more sensor signals. A gaseous fuel supply subsystem is configured to supply gaseous fuel to the engine and an electronic controller subsystem responsive to liquid fuel control signal(s) determines, based on the liquid fuel control signals, a modified amount of liquid fuel and an amount of gaseous fuel to be supplied to the engine for dual fuel operation.
Owner:ECODUAL

Integrated, high-efficiency processes for biomass conversion to synthesis gas

The present invention provides several variations for converting biomass, and other carbon-containing feedstocks, into syngas. Some variations include pyrolyzing or torrefying biomass in a devolatilization unit to form a gas stream and char, and gasifying the char. Other variations include introducing biomass into a fluid-bed gasifier to generate a solid stream and a gas stream, followed by a partial-oxidation or reforming reactor to generate additional syngas from either, or both, of the solid or gas stream from the fluid-bed gasifier. Hot syngas is preferably subjected to heat recovery. The syngas produced by the disclosed methods may be used in any desired manner, such as conversion to liquid fuels (e.g., ethanol).
Owner:HAAKON LLC

Vehicle control system and methods

A control system that makes adjustments, such as limiting the maximum speed or maximum torque in a vehicle, is provided. These adjustments can be based on knowledge about the vehicle and trip, and on the estimated energy remaining. The control system is applicable to a wide range of vehicles, including ground, air, water, and sea vehicles, as well as vehicles powered by battery, electricity, compressed natural gas, or even liquid fuel propulsion systems. The control system may be used to adjust vehicle operation in route to assure the vehicle reaches a destination and to inform or counteract a human vehicle operator. Control system can also be used in racing applications to calculate the fastest-possible race speed and drive torque for a given race length; or alternatively, in endurance racing or delivery applications to optimize the vehicle speed and / or drive torque for a given race length or route.
Owner:W MORRISON CONSULTING GRP

Method And Apparatus For Delivering Two Fuels To A Direct Injection Internal Combustion Engine

An apparatus for delivering two fuels to a direct injection internal combustion engine comprises a liquid-fuel supply rail, a gaseous-fuel supply rail, a drain system with a shared drain rail for collecting both liquid fuel and gaseous fuel, and a venting device for venting gaseous fuel collected by the drain rail. The method comprises separately delivering a liquid fuel at injection pressure to an injection valve through a liquid-fuel rail, and actuating the liquid-fuel injection valve to introduce liquid fuel directly into the combustion chamber. The method further comprises delivering a gaseous fuel at injection pressure to an injection valve through a gaseous-fuel rail and actuating the gaseous-fuel injection valve to introduce gaseous fuel directly into the combustion chamber. The method further comprises collecting in a drain rail liquid fuel and gaseous fuel from the liquid-fuel injection valve and the gaseous-fuel injection valve, directing liquid fuel to a storage vessel, and directing gaseous fuel to a vent pipe.
Owner:WESTPORT FUEL SYST CANADA INC

System and method for monitoring fuel at forwarding skid for gas turbine engine

A system includes a forwarding skid configured to forward a liquid supply from a liquid storage vessel toward a downstream component. The forwarding skid includes a pumping system configured to receive a gravity feed of the liquid supply from the liquid storage vessel, and the pumping system is configured to pump the liquid fuel supply toward the downstream component. The forwarding skid also includes a monitoring system configured to obtain at least one sensed parameter of the gravity feed of the liquid supply received at the forwarding skid upstream from the pumping system. The at least one sensed parameter is indicative of a supply level remaining at the liquid storage vessel.
Owner:GENERAL ELECTRIC CO

Ultra low emissions fast starting power plant

InactiveUS7827794B1Fast starting low emissionMinimal capital expenseTurbine/propulsion engine coolingGas turbine plantsNuclear engineeringLiquid fuel
The power plant combusts a hydrocarbon fuel with oxygen to produce high temperature high pressure products of combustion. These products of combustion are routed through an expander to generate power. The products of combustion are substantially free of oxides of nitrogen because the oxidizer is oxygen rather than air. To achieve fast starting, oxygen, fuel and water diluent are preferably stored in quantities sufficient to allow the power plant to operate from these stored consumables. The fuel can be a gaseous or liquid fuel. The oxygen is preferably stored as liquid and routed through a vaporizer before combustion in a gas generator along with the hydrocarbon fuel. In one embodiment, the vaporizer gasifies the oxygen by absorption of heat from air before the air is routed into a separate heat engine, such as a gas turbine. The gas turbine thus operates on cooled air and has its power output increased.
Owner:CLEAN ENERGY SYST

Advanced carbon dioxide fuel tank inerting system

An onboard inert gas generation system includes an evaporator comprising a vessel that receives a hydrocarbon fuel from a fuel tank, separates vapor fuel components from liquid fuel components, establishes a nearly constant fuel vapor composition, and outputs the fuel vapor to be mixed with air prior to combusting the fuel vapor and air mixture in a catalytic reactor. Water is separated from the inert gas produced and the inert gas is introduced into the ullage space of the fuel tank to prevent or reduce possible hazardous conditions in the fuel tank.
Owner:HONEYWELL INT INC

Process to produce biofuels from biomass

Biofuels can be produced by: (i) providing a biomass containing celluloses, hemicelluloses, lignin, nitrogen compounds and sulfur compounds; (ii) removing sulfur compounds and nitrogen compounds from the biomass by contacting the biomass with a digestive solvent to form a pretreated biomass containing carbohydrates and having less than 35% of the sulfur content and less than 35% of the nitrogen content of untreated biomass on a dry mass basis; (iii) contacting the pretreated biomass directly with hydrogen in the presence of a hydrogenolysis catalyst to form a plurality of oxygenated intermediates, and (vi) processing at least a portion of the oxygenated intermediates to form a liquid fuel.
Owner:SHELL OIL CO

Liquid fuel compositions

Liquid fuel compositions comprising one or more C4+ compounds derived from a water-soluble oxygenated hydrocarbon.
Owner:SHELL USA INC

Method using solar energy, microwaves and plasmas to produce a liquid fuel and hydrogen from biomass or fossil coal

A system uses thermal solar energy coupled with microwaves and plasma for producing carbon monoxide (CO) and dihydrogen (H2) from carbonated compounds (biomass, domestic waste, sludge from waste water, fossil coal), wherein the obtained gaseous mixture yields, amongst others, hydrocarbon fuels (olefins, paraffin), esters, and alcohols via a Fischer-Tropsch synthesis. In a first step the carbonated compounds are roasted and pyrolized to produce char and dry coal, and a mixture of superheated gases containing CO2, steam, tars and non-condensable volatile materials. The method includes in a second step, and from the pyrolyis products (char or coal, gas mixture), generating a syngas substantially containing a mixture of carbon monoxide and dihydrogen, the mixture being used in Fischer-Tropsch synthesis units. After the Fischer-Tropsch step, the synthesis products are separated in a distillation column after heating in solar furnaces of mixed furnaces (solar / microwave).
Owner:UGOLIN NICOLAS

Direct liquid fuel cell and a novel binary electrode therefor

A fuel cell comprising: (a) a binary anode, (b) a cathode, and (c) a liquid electrolyte disposed between and interacting with the binary anode and the cathode, wherein the binary anode includes at least one liquid fuel and at least one solid fuel. Preferably, the electrolyte includes an alcohol such as methanol, and the solid fuel includes aluminum, magnesium and / or zinc.
Owner:MORE ENERGY

Liquid fuel compositions for electrochemical fuel cells

A new fuel composition useful for catalytic fuel cells is made up of at least two components. The primary fuel component is a surface active compound, such as methanol, that is a source of and acts to prevent unwanted decomposition of the auxiliary fuel. The auxiliary fuel is a hydrogen-containing inorganic compound with a high reduction potential, such as NaBH4, which acts as a highly reactive source of energy and serves to catalyze the catalytic oxidation of the primary fuel.
Owner:MORE ENERGY

Production of synthetic transportation fuels from carbonaceous material using self-sustained hydro-gasification

A process and apparatus for producing a synthesis gas for use as a gaseous fuel or as feed into a Fischer-Tropsch reactor to produce a liquid fuel in a substantially self-sustaining process. A slurry of particles of carbonaceous material in water, and hydrogen from an internal source, are fed into a hydro-gasification reactor under conditions whereby methane rich producer gases are generated and fed into a steam pyrolytic reformer under conditions whereby synthesis gas comprising hydrogen and carbon monoxide are generated. A portion of the hydrogen generated by the steam pyrolytic reformer is fed through a hydrogen purification filter into the hydro-gasification reactor, the hydrogen therefrom constituting the hydrogen from an internal source. The remaining synthesis gas generated by the steam pyrolytic reformer is either used as fuel for a gaseous fueled engine to produce electricity and / or process heat or is fed into a Fischer-Tropsch or similar reactor under conditions whereby a liquid fuel is produced.
Owner:RGT UNIV OF CALIFORNIA

Process for producing liquid fuel from carbon dioxide and water

A process for producing high octane fuel from carbon dioxide and water is disclosed. The feedstock for the production line is industrial carbon dioxide and water, which may be of lower quality. The end product can be high octane gasoline, high cetane diesel or other liquid hydrocarbon mixtures suitable for driving conventional combustion engines or hydrocarbons suitable for further industrial processing or commercial use. Products, such as dimethyl ether or methanol may also be withdrawn from the production line. The process is emission free and reprocesses all hydrocarbons not suitable for liquid fuel to form high octane products. The heat generated by exothermic reactions in the process is fully utilizes as is the heat produced in the reprocessing of hydrocarbons not suitable for liquid fuel.
Owner:CRI EHF
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products