Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

110 results about "Metallic nanostructures" patented technology

Use of electromagnetic excitation or light-matter interactions to generate or exchange thermal, kinetic, electronic or photonic energy

The present disclosure concerns a means to use at least a form of electromagnetic excitation or light-matter interactions in a structure or material having one or more addressable frequencies to generate the exchange of thermal, kinetic, electronic or photonic energy. In some implementations this provides a means to use electromagnetic excitation or light-matter interactions to influence, cause, control, modulate, stimulate or change the state or phase of electrical, magnetic, optical or electromagnetic charge, emission, conduction, storage or similar properties. The method could include the use of light-matter interactions to generate electromagnetic excitation or light-matter interactions and concentrate extremely localized field effects or concentrated plasmonic field effects to cause an exchange of energy states in a material or structure. Said field effects could be used for excitation of surface electrons in metallic nanostructures causing said electrons to exchange energy states or said field effects could be used to mediate or stimulate photon emissions or to modulate photonic energy to excite or stimulate emissions of electrons. Said electron or photon emissions could be used to drive photochemical, photocatalysis, photovoltaic or thermophotovoltaic reactions.
Owner:DEFRIES ANTHONY +1

Silicon substrate having nanostructures and method for producing the same and application thereof

A method for forming a silicon substrate having a multiple silicon nanostructures includes the steps of: providing a silicon substrate; forming an oxidization layer on the silicon substrate; immersing the silicon substrate in a fluoride solution including metal ions, thereby depositing a plurality of metal nanostructures on the silicon substrate; and immersing the silicon substrate in an etching solution to etch the silicon under the metal nanostructures, the unetched silicon forming the silicon nano structures.
Owner:NAT TAIWAN UNIV

Raman enhancement detection method and Raman enhancement detection device for micro LED chip

The invention discloses a Raman enhancement detection method and a Raman enhancement detection device for a micro LED chip. According to the detection method provided by the invention, photoluminescence detection and Raman detection are combined, the photoluminescence detection provides luminescence wavelength and brightness information, and the Raman detection provides electrical properties, so that the problem of insufficient photoluminescence detection accuracy is solved; electron energy level resonance and surface plasmon resonance enhanced Raman technologies are adopted, so that the Ramanscattering intensity is enhanced by 103 to 108, part of the Raman scattering intensity reaches the photoluminescence intensity, and a foundation is laid for rapid measurement; the metal nanostructurenot only improves the luminous efficiency of the micro LED chip, but also can enhance Raman scattering signals by using surface plasmon, so that the detection speed is increased; microscopic Raman detection is a nondestructive testing means, the detection process is simple, the required time is short, the detection speed is high, the micro LED chip does not need to be specially treated, and the method is suitable for massive detection of the micro LED chip.
Owner:PEKING UNIV

Core-shell structured silica @ mesoporous silica supported gold nanoparticle microbead and preparation method of same

The invention discloses a core-shell structured silica @ mesoporous silica supported gold nanoparticle microbead and a preparation method of the same, relates to the gold nanoparticle microbead and the preparation method of the same, and aims at solving the technical problem of poor quality of Raman spectrum of the existing metal nano structure. The core-shell structured silica @ mesoporous silica supported gold nanoparticle microbead is composed of a core layer and a shell layer. The preparation method comprises the following steps of: preparing small silica nanoparticle; preparing silica nano seeds; preparing core-shell structured silica @ mesoporous silica nanoparticle sol solution; preparing silica @ mesoporous silica nanoparticle; preparing silica @ mesoporous silica nanoparticle of which the shell layer comprises amino groups; preparing the core-shell structured silica @ mesoporous silica supported gold nanoparticle; and preparing the core-shell structured silica @ mesoporous silica supported gold nanoparticle microbead. The microbead prepared by the method is controllable in size and appearance, high in stability and capable of effectively enhancing the Raman spectrum.
Owner:HEILONGJIANG UNIV

Self-assembly preparation of one-dimensional nano-structure

The invention relates to self-assembly preparation of a one-dimensional nano-structure. According to the self-assembly preparation, (1) precious metal nano-particles are synthesized in an aqueous solution system according to the liquid phase synthesis method; (2) the obtained precious metal nano-particles are dispersed in a mixed solution of inorganic salt and alcohol; (3) a certain amount of an alkaline solution such as an ethanol solution of ammonium hydroxide is taken and added to the mixed solution, the mixed solution is stirred for a certain time and centrifuged, and therefore the metal nano-structure which is of a self-assembly chain shape is obtained. According to the self-assembly preparation of the one-dimensional nano-structure, the one-dimensional chain-shaped nano-structure with different particle sizes can be assembled, any template does not needed, the assembly process is simple and easy to control, separation is easy, a preparation system is environmentally friendly, no toxic and harmful solution is added, the technologies in the preparation process and the assembly process are simple, the preparation cost is low, a solution system is low in price, the application range is wide, and the one-dimensional nano-structure is easy to prepare in a large scale.
Owner:TIANJIN POLYTECHNIC UNIV

Nano-structure electrode for energy storage device and pseudocapacitor having electrode

The invention discloses a nano-structure electrode for an energy storage device and a pseudocapacitor having the electrode. The nano-structure electrode has mutually-conductive and mutually-connected metal-nano-structure leading-out electrodes, wherein the surface of each leading-out electrode is wrapped with an active layer. The nano-structure electrode is also provided with a modification layer, wherein the modification layer is arranged between the surface of each leading-out electrode and each active layer. Each leading-out electrode is a metal nanowire, of which the diameter is 5 nm-500 nm, and the length is larger than 5 mum. The thickness of the active layer is 1 nm-1000 nm. The active layer is formed by stacking one or more layer of son active layers, wherein the son active layers are made of any one of transition metal oxide, conductive polymer or composite pseudocapacitor materials. The modification layer is formed by stacking one or more layer of son modification layers, wherein the son modification layers are made of metal oxide, metal nitride or metal fluoride. The nano-structure electrode has the advantage of large surface area, and the pseudocapacitor having the nano-structure electrode with the structure above is large in capacity.
Owner:GUANG ZHOU NEW VISION OPTO ELECTRONICS TECH

Super-resolution microscopy methods and systems enhanced by dielectric microspheres or microcylinders used in combination with metallic nanostructures

Methods and systems for the super-resolution imaging can make visible strongly subwavelength feature sizes (even below 100 nm) in the optical images of biomedical or any nanoscale structures. The main application of the proposed methods and systems is related to label-free imaging where biological or other objects are not stained with fluorescent dye molecules or with fluorophores. This label-free microscopy is more challenging as compared to fluorescent microscopy because of the poor optical contrast of images of objects with subwavelength dimensions. However, these methods and systems are also applicable to fluorescent imaging. Their use is extremely simple, and it is based on application of the microspheres or microcylinders or, alternatively, elastomeric slabs with embedded microspheres or microcylinders to the objects which are deposited on the surfaces covered with thin metallic layers or metallic nanostructures. The mechanism of imaging involved use of the plasmonic near-fields for illuminating the objects and virtual imaging of these objects through microspheres or microcylinders. These methods and systems do not require use of fragile probe tips and slow point-by-point scanning techniques. These methods and systems can be used in conjunction with any types of microscopes including upright, inverted, fluorescence, confocal, phase-contrast, total internal reflection and others. Scanning the samples can be performed using micromanipulation with individual spheres or cylinders or using translation of the slabs. These methods and systems are applicable to dry, wet and totally liquid-immersed samples and structures.
Owner:THE UNITED STATES OF AMERICA AS REPRESETNED BY THE SEC OF THE AIR FORCE

Protein detecting chip based on micro-nanometer fluid and preparation method of protein detecting chip

The invention discloses a protein detecting chip based on micro-nanometer fluid and a preparation method of the protein detecting chip, belonging to biotechnology. According to the protein detecting chip disclosed by the invention, sample introduction, reaction and detection are integrated on a micro-fluidic chip, and extremely high detection sensitivity is realized through the fluorescence enhancement effect of a metal nanometer structure. Compared with a conventional method, the preparation method disclosed by the invention has the advantages that quick high-sensitivity detection of proteinis realized, complex operation is not needed, and the overall detection course is automatically completed. Besides, a large-scale preparation method is provided based on a micro nanometer processing technology, the cost of chips is reduced, and the large-scale preparation method is suitable for large-scale production and application.
Owner:江苏医联生物科技有限公司
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products