Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

3114 results about "Dye-sensitized solar cell" patented technology

A dye-sensitized solar cell (DSSC, DSC, DYSC or Grätzel cell) is a low-cost solar cell belonging to the group of thin film solar cells. It is based on a semiconductor formed between a photo-sensitized anode and an electrolyte, a photoelectrochemical system. The modern version of a dye solar cell, also known as the Grätzel cell, was originally co-invented in 1988 by Brian O'Regan and Michael Grätzel at UC Berkeley and this work was later developed by the aforementioned scientists at the École Polytechnique Fédérale de Lausanne until the publication of the first high efficiency DSSC in 1991. Michael Grätzel has been awarded the 2010 Millennium Technology Prize for this invention.

Panchromatic photosensitizers and dye-sensitized solar cell using the same

Panchromatic photosensitizers having a Formula of ML1L2X were synthesized, wherein M comprises ruthenium atom; X is a monodentate anion; L1 is heterocyclic bidentate ligand having one of formulae listed below:wherein G2 has one of formulae listed below:and L2 is a tridentate ligand having a formula listed below:The substituents R1, R2, R3, R4, R5, R6, R7 of L1 and L2 are the same or different, and represent alkyl, alkoxy, alkylthio, alkylamino, halogenated alkyl, phenyl or substituted phenyl group, carboxylic acid or counter anion thereof, sulfonic acid or counter anion thereof, phosphoric acid or counter anion thereof, amino-group, halogens, or hydrogen. The above-mentioned photosensitizers are suitable to use as sensitizers for fabrication of high efficiency dye-sensitized solar cell.
Owner:NATIONAL TSING HUA UNIVERSITY

Electrode for photoelectric conversion device containing metal element and dye-sensitized solar cell using the same

An electrode for a photoelectric conversion device includes a transparent substrate and a transparent conductive film, in which the transparent conductive film contains an added metal element on at least one surface thereof, and the surface resistance of the transparent substrate is reduced in order to improve the photoelectric conversion efficiency. A dye-sensitized solar cell includes the electrode.
Owner:SAMSUNG SDI CO LTD

Counter electrode for dye-sensitized solar cell and preparation method thereof

The present invention relates to a counter electrode for DSSC which includes a porous membrane include a carbon-based material calcinated at high temperature and a platinum nano-particles and maintains higher conductivity than a thin membrane and in which the electrolyte moves smoothly, a method of preparing the same, and a DSSC using the same which is improved in photoelectric efficiency.
Owner:KOREA INST OF SCI & TECH

Organic dye-sensitized metal oxide semiconductor electrode and its manufacturing method, and organic dye-sensitized solar cell

The present invention provides a semiconductor electrode of organic dye-sensitized metal oxide having a semiconductor layer of metal oxide that can be easily prepared, and an organic dye-sensitized solar cell. The semiconductor electrode of organic dye-sensitized metal oxide comprises a substrate having a transparent electrode thereon, a semiconductor layer of metal oxide provided on the electrode and an organic dye absorbed on a surface of the semiconductor layer, the semiconductor layer being formed by a vapor deposition process.
Owner:BRIDGESTONE CORP

Method for preparing ion liquid type gel polymer electrolyte and battery by in situ polymerization

The invention relates to a method for preparing ionic liquid type gel polymer electrolyte through home position polymerization. The method comprises the following steps: taking acrylonitrile and polyethylene glycol dimethyl acrylic acid ester as monomers, taking ethylene carbonate as an organic plasticizer, taking azo diisobutyl cyanogen as an initiator, taking lithium perchlorate as a lithium salt, adding ionic liquid 1-butyl-3-methylimidazole tetrafluoborate as the component of the electrolyte, and adopting a free radical initiation and home polymerization mode to prepare the stable ionic liquid type gel polymer electrolyte. The home polymerization mode has a simple and feasible process, and is capable of directly assembling a lithium cell while simultaneously preparing the electrolyte. The prepared ionic liquid type gel polymer electrolyte has higher room temperature conductivity, good dimensional stability and mechanic properties, and can also be applied to dye sensitization solar cells. The prepared ionic liquid type gel polymer electrolyte cell can avoid the leakage and volatilization of the electrolyte and improve the safety of the cell.
Owner:CHANGZHOU INST OF ENERGY STORAGE MATERIALS &DEVICES

4,4'-dicarboxy-2,2'-bipyridine derived tridentate ligand, metal complex containing the same, and application thereof

Disclosed is a 4,4′-dicarboxy-2,2′-bipyridine derived tridentate ligand represented by formula (I):wherein definitions of Y1, Y2, and R are the same as those defined in the specification.Also disclosed are a metal complex containing the aforesaid tridentate ligand and a dye-sensitized solar cell containing the metal complex.
Owner:NATIONAL TSING HUA UNIVERSITY

Controllable crystalline form titanium dioxide and graphite alkene composite material with high efficient photoelectricity activity and preparation method thereof

The invention discloses controllable crystalline form titanium dioxide and a graphite alkene composite material with high efficient photoelectricity activity and a preparation method thereof. The composite material is formed by mixing TiO2 powder and graphite alkene or scattering the TiO2 powder in oxidized graphite alkene dispersing agents to perform hydro-thermal reaction. The mass ratio of TiO2 powder and graphite or graphite alkene is 1:1 to 500:1. The preparation method is simple, low in cost and environmental-friendly. The controllable crystalline form titanium dioxide and a graphite alkene composite material with high efficient photoelectricity activity can control crystalline form of the obtained TiO2 according to the ratio of alcohol and water or amount of titanium sources. When the amount is amplified, the controllable crystalline form titanium dioxide and a graphite alkene composite material with high efficient photoelectricity activity have good performances. After the graphite alkene is composed, photocatalysis is greatly improved. All obtained products are applied to fields of dye sensitization solar cells, catalysts, lithium ion cells, sensing and the like.
Owner:NANJING UNIV OF TECH

Dye sensitized solar cells having blocking layers and methods of manufacturing the same

A solar cell having at least one hole blocking layer and at least one electron blocking layer, and methods of fabricating such devices. Specifically, a hole blocking layer is disposed between a first electrode of the solar cell and the active layer. Further, an electron blocking layer is disposed between a second electrode and the active layer. The solar cell may be formed by fabricating an anode component and a cathode component and laminating the anode component and the cathode component together.
Owner:GENERAL ELECTRIC CO
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products