Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

91 results about "Metal oxide silicon" patented technology

Method and apparatus improving gate oxide reliability by controlling accumulated charge

ActiveUS20070069291A1Improving nonlinear responses and harmonic and intermodulaton distortion effectsReduce non-linearitySolid-state devicesElectronic switchingMOSFETDielectric
A method and apparatus are disclosed for use in improving the gate oxide reliability of semiconductor-on-insulator (SOI) metal-oxide-silicon field effect transistor (MOSFET) devices using accumulated charge control (ACC) techniques. The method and apparatus are adapted to remove, reduce, or otherwise control accumulated charge in SOI MOSFETs, thereby yielding improvements in FET performance characteristics. In one embodiment, a circuit comprises a MOSFET, operating in an accumulated charge regime, and means for controlling the accumulated charge, operatively coupled to the SOI MOSFET. A first determination is made of the effects of an uncontrolled accumulated charge on time dependent dielectric breakdown (TDDB) of the gate oxide of the SOI MOSFET. A second determination is made of the effects of a controlled accumulated charge on TDDB of the gate oxide of the SOI MOSFET. The SOI MOSFET is adapted to have a selected average time-to-breakdown, responsive to the first and second determinations, and the circuit is operated using techniques for accumulated charge control operatively coupled to the SOI MOSFET. In one embodiment, the accumulated charge control techniques include using an accumulated charge sink operatively coupled to the SOI MOSFET body.
Owner:PSEMI CORP

Method and apparatus improving gate oxide reliability by controlling accumulated charge

ActiveUS7890891B2Improving nonlinear responses and harmonic and intermodulaton distortion effectsReduce non-linearitySolid-state devicesElectronic switchingMOSFETDielectric
A method and apparatus are disclosed for use in improving the gate oxide reliability of semiconductor-on-insulator (SOI) metal-oxide-silicon field effect transistor (MOSFET) devices using accumulated charge control (ACC) techniques. The method and apparatus are adapted to remove, reduce, or otherwise control accumulated charge in SOI MOSFETs, thereby yielding improvements in FET performance characteristics. In one embodiment, a circuit comprises a MOSFET, operating in an accumulated charge regime, and means for controlling the accumulated charge, operatively coupled to the SOI MOSFET. A first determination is made of the effects of an uncontrolled accumulated charge on time dependent dielectric breakdown (TDDB) of the gate oxide of the SOI MOSFET. A second determination is made of the effects of a controlled accumulated charge on TDDB of the gate oxide of the SOI MOSFET. The SOI MOSFET is adapted to have a selected average time-to-breakdown, responsive to the first and second determinations, and the circuit is operated using techniques for accumulated charge control operatively coupled to the SOI MOSFET. In one embodiment, the accumulated charge control techniques include using an accumulated charge sink operatively coupled to the SOI MOSFET body.
Owner:PSEMI CORP

Molecular detection device and chip including MOSFET

A molecular detection chip including a metal oxide silicon-field effect transistor (MOSFET) on sidewalls of a micro-fluid channel and a molecular detection device including the molecular detection chip are provided. A molecular detection method, particularly, qualification methods for the immobilization of molecular probes and the binding of a target sample to the molecular probes, using the molecular detection device, and a nucleic acid mutation assay device and method are also provided. The formation of the MOSFET on the sidewalls of the micro-fluid channel makes easier to highly integrate a molecular detection chip. In addition, immobilization of probes directly on the surface of a gate electrode ensures the molecular detection chip to check for the immobilization of probes and coupling of a target molecule to the probes in situ.
Owner:SAMSUNG ELECTRONICS CO LTD

High yield, high density on-chip capacitor design

A capacitance circuit assembly mounted on a semiconductor chip, and method for forming the same, comprising a plurality of divergent capacitors in a parallel circuit connection between first and second ports, the plurality comprising at least one Metal Oxide Silicon Capacitor and at least one capacitor selected from the group comprising a Vertical Native Capacitor and a Metal-Insulator-Metal Capacitor. In one aspect, the assembly has vertical orientation, the Metal Oxide Silicon capacitor located at the bottom and defining the footprint, middle Vertical Native Capacitor comprising a plurality of horizontal metal layers comprising a plurality of parallel positive plates alternating with a plurality of parallel negative plates. In another aspect, a vertically asymmetric orientation provides a reduced total parasitic capacitance.
Owner:GLOBALFOUNDRIES INC

Molecular detection methods using molecular detection chips including a metal oxide semiconductor field effect transistor

A molecular detection chip including a metal oxide silicon-field effect transistor (MOSFET) on sidewalls of a micro-fluid channel and a molecular detection device including the molecular detection chip are provided. A molecular detection method, particularly, qualification methods for the immobilization of molecular probes and the binding of a target sample to the molecular probes, using the molecular detection device, and a nucleic acid mutation assay device and method are also provided. The formation of the MOSFET on the sidewalls of the micro-fluid channel makes easier to highly integrate a molecular detection chip. In addition, immobilization of probes directly on the surface of a gate electrode ensures the molecular detection chip to check for the immobilization of probes and coupling of a target molecule to the probes in situ.
Owner:SAMSUNG ELECTRONICS CO LTD

Metal oxide semiconductor device having mitigated threshold voltage roll-off and threshold voltage roll-off mitigation method thereof

The present invention provides a MOS (Metal-Oxide-Silicon) device having mitigated threshold voltage roll-off and a threshold voltage roll-off mitigation method therefor. The MOS device includes: a substrate, a well region, an isolation region, a gate, two LDDs (Lightly-Doped-Drains), a source, a drain and a compensation doped region. The compensation doped region is substantially in contact with at least a part of a recessed portion along the channel length direction. Viewing from a cross-section view, at a boundary where the compensation doped region is in contact with the isolation region along the channel length direction, the compensation doped region has two doped region widths along the channel width direction, wherein, the two doped region widths of the compensation doped region are both not greater than 10% of the width of the operation region. Two doped region widths are defined as distances within an interior part and an exterior part of the operation region, respectively.
Owner:RICHTEK TECH

Anti-slide valve power supply control circuit of high speed train

The invention relates to an anti-slide valve power supply control circuit of a high speed train. The anti-slide valve power supply control circuit mainly comprises an isolation optical coupler, an MOSFET (Metal-Oxide-Silicon Field-Effect Transistor), a Darlington transistor, two charging and discharging capacitors, a power supply control relay and necessary resistors. The circuit smartly utilizes the matching of the MOSFET and the Darlington transistor to respectively complete charging and discharging of capacitors so that the relay keeps an electrification state when PWM (Pulse Wavelength Modulation) signals are input. The make-and-break of the MOSFET (Metal-Oxide-Silicon Field-Effect Transistor) and the Darlington transistor is realized through the PWM signals so as to realize charging and discharging of the capacitors in each stage and maintain the control of a driving output relay. When the PWM control signals are in failure, the relay can be quickly cut off, and an anti-slide power supply is reliably cut off under the condition that the anti-slide valve or a driving circuit thereof or the anti-slide valve power supply control circuit is in failure, so that normal work of a braking system is ensured, and the safety and reliability of the braking system and the high speed train are improved.
Owner:NANJING CRRC PUZHEN HAITAI BRAKE EQUIP CO LTD

Method of integration of ONO stack formation into thick gate oxide CMOS flow

ActiveUS9824895B1Improvement in threshold voltage (VT) uniformityImprove performanceTransistorSolid-state devicesCMOSSilicon oxide
A method of integrating a silicon-oxide-nitride-oxide-silicon (SONOS) transistor into a complementary metal-oxide-silicon (CMOS) baseline process. The method includes the steps of forming the gate oxide layer of at least one metal-oxide-silicon (MOS) transistor prior to forming a non-volatile (NV) gate stack of the SONOS transistor.
Owner:LONGITUDE FLASH MEMORY SOLUTIONS LTD

Starter device for normally off JFETs

A semiconductor switching device or amplifier combined in parallel with one or more active devices defined as starter devices. A starter device is used to reduce the terminal voltage of a switching device or amplifier to a dc level below about 0.4 volts which will then allow the switching device to easily change between the on or conducting state and the off or non-conducting state. Three different starter devices are utilized. The first being a Bipolar Junction Transistor (BJT), the second a Metal Oxide Silicon Field Effect Transistor (MOSFET), and the third consisting of three normally off JFETs connected serially. Generally, a single starter device is coupled across the terminals of a semiconductor switching device or amplifier, but it is possible and sometimes advantageous to couple two or more starter devices in parallel. In a first case, a symmetrical, normally off or enhancement mode JFET is used as the switch or amplifier. A starter device coupled between source and drain of the JFET will allow operation at dc voltage levels above 0.4 volts. In a second case, an asymmetrical, normally off JFET is used as the switch or amplifier. A starter device coupled between source and drain of the JFET will allow operation at dc voltage levels above 0.4 volts. In a third case, a normally off MESFET is used as the switch or amplifier. A starter device coupled between source and drain of the MESFET will allow operation at dc voltage levels above 0.4 volts.
Owner:POWER INTEGRATIONS INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products