Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

3343 results about "Silicon-controlled rectifier" patented technology

A silicon controlled rectifier or semiconductor controlled rectifier is a four-layer solid-state current-controlling device. The principle of four-layer p–n–p–n switching was developed by Moll, Tanenbaum, Goldey and Holonyak of Bell Laboratories in 1956. The practical demonstration of silicon controlled switching and detailed theoretical behavior of a device in agreement with the experimental results was presented by Dr Ian M. Mackintosh of Bell Laboratories in January 1958. The name "silicon controlled rectifier" is General Electric's trade name for a type of thyristor. The SCR was developed by a team of power engineers led by Gordon Hall and commercialized by Frank W. "Bill" Gutzwiller in 1957.

Method of operating semiconductor memory device with floating body transistor using silicon controlled rectifier principle

Methods of operating semiconductor memory devices with floating body transistors, using a silicon controlled rectifier principle are provided, as are semiconductor memory devices for performing such operations. A method of maintaining the data state of a semiconductor dynamic random access memory cell is provided, wherein the memory cell comprises a substrate being made of a material having a first conductivity type selected from p-type conductivity type and n-type conductivity type; a first region having a second conductivity type selected from the p-type and n-type conductivity types, the second conductivity type being different from the first conductivity type; a second region having the second conductivity type, the second region being spaced apart from the first region; a buried layer in the substrate below the first and second regions, spaced apart from the first and second regions and having the second conductivity type; a body region formed between the first and second regions and the buried layer, the body region having the first conductivity type; and a gate positioned between the first and second regions and adjacent the body region. The memory cell is configured to store a first data state which corresponds to a first charge in the body region in a first configuration, and a second data state which corresponds to a second charge in the body region in a second configuration. The method includes: providing the memory cell storing one of the first and second data states; and applying a positive voltage to a substrate terminal connected to the substrate beneath the buried layer, wherein when the body region is in the first state, the body region turns on a silicon controlled rectifier device of the cell and current flows through the device to maintain configuration of the memory cell in the first memory state, and wherein when the memory cell is in the second state, the body region does not turn on the silicon controlled rectifier device, current does not flow, and a blocking operation results, causing the body to maintain the second memory state.
Owner:ZENO SEMICON

Low-temperature smoke denitration SCR (silicon controlled rectifier) catalyst and preparation method

The invention relates to a low-temperature smoke denitration SCR (silicon controlled rectifier) catalyst, which comprises a carrier, a manganese oxide, and composite oxide of one or more of Ce, Zr, Ti, Co, Fe and Cu, the mass content of manganese is 0.1-66 percent, and the total mass content of the Ce, Zr, Ti, Co, Fe or/and Cu is 0-50 percent; and glass fiber and/or kieselguhr is used as the carrier, wherein the glass fiber of the carrier is calcined for 2-4 hours at temperature of 400-600 DEG C, then placed in a nitric acid, sulfuric acid or hydrochloric acid solution with mass concentration of 5-40 percent for acidizing for 1-8 hours, washed by distilled water to be neutered, dried at temperature of 80-120 DEG C, and crushed to have the fineness of 20-325 meshes. The catalyst uses the glass fiber and the kieselguhr as the carriers, so that the dispersion effect of nanoparticles and specific surface area of the catalyst are increased, the high adsorptive capacity and strong heat resistance and corrosion resistance capacity are achieved, stronger toxic resistance capacity to sulfur dioxide and stream contained in the smoke is realized, the invention can be used for 10-200 DEG C of low temperature smoke denitration, and has strong water resisting and sulphur toxic resisting capacities.
Owner:GUODIAN SCI & TECH RES INST +1

Power supply for LED lamp with triac dimmer

A bleeder circuit is provided in a switched mode power supply (SMPS) that provides a compensation current when the loop current drops below the holding current of the TRIAC to alleviate light flickering problem. Further, automatic power factor correction is also provided in embodiments of the invention, which enables the output current to be in phase with the input voltage. The power factor correction not only improves the efficiency of the power supply, it can also reduce the compensation current and the duration in which compensation current flows, thereby reducing the power loss in the bleeder circuit.
Owner:BCD SHANGHAI MICRO ELECTRONICS CO LTD +1

Leakage detecting protection circuit capable of periodically automatically detecting function integrity

The invention provides a leakage detecting protection circuit capable of periodically automatically detecting function integrity. The leakage detecting protection circuit comprises a main loop switch, a resetting button, a tripping coil, a silicon controlled rectifier, an induction coil for detecting leakage current, a self-induction coil for detecting a low-resistance failure and a control chip which drives the switching-on/off of the silicon controlled rectifier by a leakage current detection result, and further comprises a) a timer for periodically outputting a function integrity detection signal, b) a detection signal latching circuit, c) an analogue test switch for generating analogue leakage current, d) a delay output circuit and e) a sampling circuit, wherein the timer outputs the detection signal to the latching circuit and the delay output circuit; and if a function is detected to fail, the delay output circuit outputs a tripping signal to switch the silicon controlled rectifier on, and the main loop switch is switched off. The leakage detecting protection circuit has the main advantages of periodically automatically detecting whether the leakage protection function of the circuit is integral or not without annual testing and avoiding tripping within the service life of the circuit, along with more convenience of use.
Owner:黄华道
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products