Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1437 results about "Marker gene" patented technology

In biology, a marker gene may have several meanings. In nuclear biology and molecular biology, a marker gene is a gene used to determine if a nucleic acid sequence has been successfully inserted into an organism's DNA. In particular, there are two sub-types of these marker genes: a selectable marker and a marker for screening. In metagenomics and phylogenetics, a marker gene is an orthologous gene group which can be used to delineate between taxonomic lineages.

Medical device with coating for capturing genetically-altered cells and methods for using same

InactiveUS20050025752A1Good biocompatibilityDecreases or inhibits tissue-based excessive intimal hyperplasia and restenosisBiocideMaterial nanotechnologyAntigenProgenitor
Therapeutic and drug delivery systems are provided in the form of medical devices with coatings for capturing and immobilizing target cells such as circulating progenitor or genetically-altered mammalian cells in vivo. The genetically-altered cells are transfected with genetic material for expressing a marker gene and a therapeutic gene in a constitutively or controlled manner. The marker gene is a cell membrane antigen not found in circulating cells in the blood stream and therapeutic gene encodes a peptide for the treatment of disease, such as, vascular disease and cancer. The coating on the medical device may be a biocompatible matrix comprising at least one type of ligand, such as antibodies, antibody fragments, other peptides and small molecules, which recognize and bind the target cells. The therapeutic and / or drug delivery systems may be provided with a signal source such as activator molecules for stimulating the modified cells to express and secrete the desired marker and therapeutic gene products.
Owner:ORBUSNEICH MEDICAL PTE LTD

Multi-gene classifiers and prognostic indicators for cancers

The present invention relates to the identification of marker genes useful in the diagnosis and prognosis of clinically problematic subsets of primary breast cancers. More specifically, the invention relates to the identification of two sets of marker genes that are differentially expressed in and useful for the diagnosis and prognosis of subsets of hormone receptor-negative (HRneg; i.e., ER and PR negative) and triple-negative (Tneg; i.e., ER, PR and HER2 negative) primary breast cancers at highest risk for early metastatic relapse. The invention further provides methods for determining the best course of treatment for patients having one of these clinically problematic subsets of primary breast cancers. The invention also provides methods for identifying compounds that prevent or treat a subtype of breast cancer based on their ability to modulate the activity or expression level of one or more marker genes identified herein.
Owner:RGT UNIV OF CALIFORNIA +1

Systems for gene targeting and producing stable genomic transgene insertions

The novel germ-line transformation systems disclosed in this patent application allow the physical deletion of transposon DNA following the transformation process, and the targeting of transgene integrations into predefined target sites. In this way, transposase-mediated mobilization of genes-of-interest is excluded mechanistically and random genomic integrations eliminated. In contrast to conventional germ-line transformation technology, our systems provide enhanced stability to the transgene insertion. Furthermore, DNA sequences required for the transgene modification (e.g. transformation marker genes, transposase or recombinase target sites), are largely removed from the genome after the final transgene insertion, thereby eliminating the possibility for instability generated by these processes. The RMCE technology, which is disclosed in this patent application for invertebrate organisms (exemplified in Drosophila melanogaster) represents an extremely versatile tool with application potential far beyond the goal of transgene immobilization. RMCE makes possible the targeted integration of DNA cassettes into a specific genomic loci that are pre-defined by the integration of the RMCE acceptor plasmid. The loci can be characterized prior to a targeting experiment allowing optimal integration sites to be pre-selected for specific applications, and allowing selection of host strains with optimal fitness. In addition, multiple cassette exchange reactions can be performed in a repetitive way where an acceptor cassette can be repetitively exchanged by multiple donor cassettes. In this way several different transgenes can be placed precisely at the same genomic locus, allowing, for the first time, the ability to eliminate genomic positional effects and to comparatively study the biological effects of different transgenes.
Owner:HORN CARSTEN +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products