Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

176 results about "Chromosomal dna" patented technology

In most living organisms, genomic DNA exists as chromosomal DNA. In bacteria, chromosomal DNA freely floats in the cytoplasm while in eukaryotic organisms, they reside inside the nucleus. Chromosomal DNA can be single-stranded or double-stranded. They can also be linear or circular.

Apparatus, methods and compositions for biotechnical separations

embodiments of the invention include purification of DNA, preferably plasmid DNA, by use of selective precipitation, preferably by addition of compaction agents Also included is a scaleable method for the liquid-phase separation of DNA from RNA. RNA may also be recovered by fractional precipitation according to the invention. RNA, commonly the major contaminant in DNA preparations, can be left in solution while valuable purified plasmid DNA is directly precipitated. Endotoxin can also be kept to very low levels. The invention includes mini-preps, preferably of plasmid and chromosomal DNA to obtain sequenceable and restriction digestible DNA in high yields in multiple simultaneous procedures. As a method of assay, a labeled probe is precipitated by hybridizing it to a target, (erg. chromosomal DNA, oligonucleotides, Ribosomal RNA, tRNA), and thereafter precipitating the probe / target complex with compaction agents and leaving in solution any unhybridized probe.
Owner:WILLSON RICHARD C III +1

Methods of staining target chromosomal DNA employing high complexity nucleic acid probes

Methods and compositions for staining based upon nucleic acid sequence that employ nucleic acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyses. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acid probes are typically of a complexity greater than 50 kb, the complexity depending upon the cytogenetic application. Methods and reagents are provided for the detection of genetic rearrangements. Probes and test kits are provided for use in detecting genetic rearrangements, particularly for use in tumor cytogenetics, in the detection of disease related loci, specifically cancer, such as chronic myelogenous leukemia (CML), retinoblastoma, ovarian and uterine cancers, and for biological dosimetry. Methods and reagents are described for cytogenetic research, for the differentiation of cytogenetically similar but genetically different diseases, and for many prognostic and diagnostic applications.
Owner:RGT UNIV OF CALIFORNIA

Diagnosis, prognosis and treatment of pulmonary diseases

The present invention provides methods to protect a subject from a respiratory disorder involving an airway obstructive disease such as asthma or chronic obstructive pulmonary disease. Provided are methods to protect a subject from an airway obstructive disease using gene therapy. Methods are provided for supplying FoxA2 function to cells of the lung and airway, such as smooth muscle and epithelial cells, by FoxA2 gene therapy. The FoxA2 gene, a modified FoxA2 gene, or a part of the gene may be introduced into the cell in a vector such that the gene remains extrachromosomal or may be integrated into the subjects chromosomal DNA for expression. These methods provide for administering to a subject in need of such treatment a therapeutically effective amount of a FoxA2 gene, or pharmaceutically acceptable composition thereof, for overexpressing the FoxA2 gene. Such methods of expressing the administered FoxA2 gene in the lungs and airway provide for: (1) preventing or alleving bronchial hyperresponsiveness; (2) preventing or alleving of an airway obstructive disease, e.g., bronchial hyperreactivity, airway hyperresponsiveness, asthma or chronic obstructive pulmonary disorder (“COPD”); (3) reducing the airway resistance response to inhaled natural or synthetic bronchoconstrictors or allergens or to exercise; and (4) enhancing responsiveness (relaxation) of airway tissues to β-agonists.
Owner:CHILDRENS HOSPITAL MEDICAL CENT CINCINNATI

Method of separating extra-chromosonal dna from other cellular components

The invention relates to a method of separating extra-chromosomal DNA from RNA. It also relates to DNA produced by the method and pharmaceuticals derived from such DNA, for example, DNA vaccines. The method comprises separating extra-chromosomal DNA from RNA without first digesting the RNA, and comprises: i) lysing cells comprising extra-chromosomal DNA to form a lysate; ii) clarifying the lysate; and iii) subjecting the clarified lysate to tangential flow ultra filtration under conditions, which allow a substantial amount of the RNA to pass through a membrane whilst the extra-chromosomal DNA is retained. The preferred conditions include the use of a diafiltration buffer of low conductivity and diafiltration volumes of over 10 volume equivalents.
Owner:GLAXO GRP LIMITED OF GLAXO WELLCOME HOUSE

Method for plasmid preparation by conversion of open circular plasmid

In accordance with the invention, there is provided a method for preparing plasmid from host cells which contain the plasmid, comprising the steps: (a) preparing a cleared lysate of the host cells, wherein the cleared lysate comprises unligatable open circular plasmid, wherein the open circular plasmid is not 3'-hydroxyl, 5-phosphate nicked plasmid; (b) incubating the unligatable open circular plasmid with one or more enzymes in the presence of their appropriate nucleotide cofactors, whereby the unligatable open circular plasmid is converted to 3'-hydroxyl, 5'-phosphate nicked plasmid; (c) incubating the 3'-hydroxyl, 5'-phosphate nicked plasmid with DNA ligase in the presence of DNA ligase nucleotide cofactor, whereby 3'-hydroxyl, 5'-phosphate nicked plasmid is converted to relaxed covalently closed circular plasmid; and (d) incubating the relaxed covalently closed circular plasmid with DNA gyrase in the presence of DNA gyrase nucleotide cofactor, whereby relaxed covalently closed circular plasmid is converted to negatively supercoiled plasmid. Preferably, the enzymatic steps (b), (c), and (d) are performed in a single step using an enzyme mixture comprising DNA polymerase, DNA ligase, and DNA gyrase. Preferably, the mixture further comprises a 3' terminus deblocking enzyme, such as exonuclease III or 3'-phosphatase. Preferably, the mixture further comprises one or more regenerating enzymes and a high energy phosphate donor, whereby the nucleotide by-products of the nucleotide cofactors generated by DNA ligase and DNA gyrase are converted to back to nucleotide cofactor. Preferably, the enzyme mixture further comprises one or more exonucleases, such as ATP dependent exonuclease, whereby linear chromosomal DNA is selectively degraded.
Owner:HYMAN EDWARD DAVID
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products