Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

2802 results about "Double strand" patented technology

Double-stranded DNA (dsDNA), a molecule of DNA consisting of two parallel strands joined by hydrogen bonds between complementary purines and pyrimidines; a double helix, the form in which DNA occurs in chromosomes.

L-ribo-LNA analogues

Provided are L-ribo bicyclic nucleotide compounds as well as syntheses of such compounds. The nucleoside compounds of the invention are useful in forming oligonucleotides that can produce nucleobase specific duplexes with complementary single stranded and double stranded nucleic acids.
Owner:SANTARIS PHARMA AS

Oligonucleotide analogues

Novel oligomers, and synthesis thereof, comprising one or more bi-, tri, or polycyclic nucleoside analogues are disclosed herein. The nucleoside analogues have a “locked” structure, termed Locked Nucleoside Analogues (LNA). LNA's exhibit highly desirable and useful properties. LNA's are capable of forming nucleobase specific duplexes and triplexes with single and double stranded nucleic acids. These complexes exhibit higher thermostability than the corresponding complexes formed with normal nucleic acids. The properties of LNA's allow for a wide range of uses such as diagnostic agents and therapeutic agents in a mammal suffering from or susceptible to, various diseases.
Owner:EXIQON AS

RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid (siNA)

The present invention concerns methods and reagents useful in modulating gene expression in a variety of applications, including use in therapeutic, diagnostic, target validation, and genomic discovery applications. Specifically, the invention relates to synthetic chemically modified small nucleic acid molecules, such as short interfering nucleic acid (siNA), short interfering RNA (siRNA), double-stranded RNA (dsRNA), micro-RNA (miRNA), and short hairpin RNA (shRNA) molecules capable of mediating RNA interference (RNAi) against target nucleic acid sequences. The small nucleic acid molecules are useful in the treatment of any disease or condition that responds to modulation of gene expression or activity in a cell, tissue, or organism.
Owner:SIMA THERAPEUTICS ICN

RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid (SiNA)

The present invention concerns methods and reagents useful in modulating gene expression in a variety of applications, including use in therapeutic, diagnostic, target validation, and genomic discovery applications. Specifically, the invention relates to synthetic chemically modified small nucleic acid molecules, such as short interfering nucleic acid (siNA), short interfering RNA (siRNA), double-stranded RNA (dsRNA), micro-RNA (miRNA), and short hairpin RNA (shRNA) molecules capable of mediating RNA interference (RNAi) against target nucleic acid sequences. The small nucleic acid molecules are useful in the treatment of any disease or condition that responds to modulation of gene expression or activity in a cell, tissue, or organism.
Owner:SIRNA THERAPEUTICS INC

Methods and compositions for the specific inhibition of gene expression by double-stranded RNA

The invention is directed to compositions and methods for selectively reducing the expression of a gene product from a desired target gene in a cell, as well as for treating diseases caused by the expression of the gene. More particularly, the invention is directed to compositions that contain double stranded RNA (“dsRNA”), and methods for preparing them, that are capable of reducing the expression of target genes in eukaryotic cells. The dsRNA has a first oligonucleotide sequence that is between 25 and about 30 nucleotides in length and a second oligonucleotide sequence that anneals to the first sequence under biological conditions. In addition, a region of one of the sequences of the dsRNA having a sequence length of at least 19 nucleotides is sufficiently complementary to a nucleotide sequence of the RNA produced from the target gene to trigger the destruction of the target RNA by the RNAi machinery.
Owner:CITY OF HOPE +1

Method for linear mRNA amplification

Methods for linearly amplifying mRNA to produce antisense RNA are provided. In the subject methods, mRNA is converted to double-stranded cDNA using a promoter-primer having a poly-dT primer site linked to a promoter sequence so that the resulting double-stranded cDNA is recognized by an RNA polymerase. The resultant double-stranded cDNA is then transcribed into antisense RNA in the presence of a reverse transcriptase that is rendered incapable of RNA-dependent DNA polymerase activity during this transcription step. The subject methods find use a variety of different applications in which the preparation of linearly amplified amounts of antisense RNA is desired. Also provided are kits for practicing the subject methods.
Owner:AGILENT TECH INC

Methods and compositions for the specific inhibition of gene expression by double-stranded RNA

The invention is directed to compositions and methods for selectively reducing the expression of a gene product from a desired target gene in a cell, as well as for treating diseases caused by the expression of the gene. More particularly, the invention is directed to compositions that contain double stranded RNA (“dsRNA”), and methods for preparing them, that are capable of reducing the expression of target genes in eukaryotic cells. The dsRNA has a first oligonucleotide sequence that is between 25 and about 30 nucleotides in length and a second oligonucleotide sequence that anneals to the first sequence under biological conditions. In addition, a region of one of the sequences of the dsRNA having a sequence length of at least 19 nucleotides is sufficiently complementary to a nucleotide sequence of the RNA produced from the target gene to trigger the destruction of the target RNA by the RNAi machinery.
Owner:CITY OF HOPE +1

RNA interference mediated inhibition of MAP kinase gene expression using short interfering nucleic acid (siNA)

This invention relates to compounds, compositions, and methods useful for modulating mitogen activated protein kinase (MAP kinase) gene expression using short interfering nucleic acid (siNA) molecules. This invention also relates to compounds, compositions, and methods useful for modulating the expression and activity of other genes involved in pathways of MAP kinase gene expression and / or activity by RNA interference (RNAi) using small nucleic acid molecules. In particular, the instant invention features small nucleic acid molecules, such as short interfering nucleic acid (siNA), short interfering RNA (siRNA), double-stranded RNA (dsRNA), micro-RNA (miRNA), and short hairpin RNA (shRNA) molecules and methods used to modulate the expression of MAP kinase genes, such as Jun amino-terminal kinase (e.g., JNK-1, JNK-2), p38 (MAPK 14), ERK (e.g., ERK-1, ERK-2) and / or c-Jun.
Owner:SIRNA THERAPEUTICS INC

Characterization of individual polymer molecules based on monomer-interface interactions

The invention relates to a method for detecting a double-stranded region in a nucleic acid by (1) providing two separate, adjacent pools of a medium and a interface between the two pools, the interface having a channel so dimensioned as to allow sequential monomer-by-monomer passage of a single-stranded nucleic acid, but not of a double-stranded nucleic acid, from one pool to the other pool; (2) placing a nucleic acid polymer in one of the two pools; and (3) taking measurements as each of the nucleotide monomers of the single-stranded nucleic acid polymer passes through the channel so as to differentiate between nucleotide monomers that are hybridized to another nucleotide monomer before entering the channel and nucleotide monomers that are not hybridized to another nucleotide monomer before entering the channel.
Owner:PRESIDENT & FELLOWS OF HARVARD COLLEGE +1

Compositions and methods for control of insect infestations in plants

InactiveUS20060021087A1Limiting and eliminating invertebrateInhibit expressionBiocideSugar derivativesInvertebrateOrganism
The present invention is directed to controlling pest infestation by inhibiting one or more biological functions in an invertebrate pest. The invention discloses methods and compositions for use in controlling pest infestation by feeding one or more different recombinant double stranded RNA molecules to the pest in order to achieve a reduction in pest infestation through suppression of gene expression. The invention is also directed to methods for making transgenic plants that express the double stranded RNA molecules, and to particular combinations of transgenic pesticidal agents for use in protecting plants from pest infestation.
Owner:MONSANTO TECH LLC

System, array and non-porous solid support comprising fixed or immobilized nucleic acids

Nucleic acids are fixed or immobilized to non-porous solid supports (substrates), and include systems containing such supports and arrays with fixed or immobilized nucleic acids. These compositions are useful for nucleic acid analyses and a host of applications, including, for example, detection, mutational analysis and quantification. The non-porous solid supports can be transparent or translucent, and the surfaces can be treated with agents to fix or immobilize the nucleic acids. Such agents include, for example, amine providing compounds, epoxy compounds and acid solutions. The fixed or immobilized nucleic acids can be unlabeled, or labeled with at least one non-radioactive signaling moiety, such as the case when the nucleic acids are double-stranded.
Owner:ENZO BIOCHEM

Reagents, methods, and libraries for bead-based sequencing

The present invention provides methods for determining a nucleic acid sequence by performing successive cycles of duplex extension along a single stranded template. The cycles comprise steps of extension, ligation, and, preferably, cleavage. In certain embodiments the methods make use of extension probes containing phosphorothiolate linkages and employ agents appropriate to cleave such linkages. In certain embodiments the methods make use of extension probes containing an abasic residue or a damaged base and employ agents appropriate to cleave linkages between a nucleoside and an abasic residue and / or agents appropriate to remove a damaged base from a nucleic acid. The invention provides methods of determining information about a sequence using at least two distinguishably labeled probe families. In certain embodiments the methods acquire less than 2 bits of information from each of a plurality of nucleotides in the template in each cycle. In certain embodiments the sequencing reactions are performed on templates attached to beads, which are immobilized in or on a semi-solid support. The invention further provides sets of labeled extension probes containing phosphorothiolate linkages or trigger residues that are suitable for use in the method. In addition, the invention includes performing multiple sequencing reactions on a single template by removing initializing oligonucleotides and extended strands and performing subsequent reactions using different initializing oligonucleotides. The invention further provides efficient methods for preparing templates, particularly for performing sequencing multiple different templates in parallel. The invention also provides methods for performing ligation and cleavage. The invention also provides new libraries of nucleic acid fragments containing paired tags, and methods of preparing microparticles having multiple different templates (e.g., containing paired tags) attached thereto and of sequencing the templates individually. The invention also provides automated sequencing systems, flow cells, image processing methods, and computer-readable media that store computer-executable instructions (e.g., to perform the image-processing methods) and / or sequence information. In certain embodiments the sequence information is stored in a database.
Owner:APPL BIOSYSTEMS INC

RNA interference mediated inhibition of TNF and TNF receptor gene expression using short interfering nucleic acid (siNA)

This invention relates to compounds, compositions, and methods useful for modulating tumor necrosis factor and / or tumor necrosis factor receptor gene expression using short interfering nucleic acid (siNA) molecules. This invention also relates to compounds, compositions, and methods useful for modulating the expression and activity of other genes involved in pathways of tumor necrosis factor and / or tumor necrosis factor receptor gene expression and / or activity by RNA interference (RNAi) using small nucleic acid molecules. In particular, the instant invention features small nucleic acid molecules, such as short interfering nucleic acid (siNA), short interfering RNA (siRNA), double-stranded RNA (dsRNA), micro-RNA (miRNA), and short hairpin RNA (shRNA) molecules and methods used to modulate the expression of tumor necrosis factor and / or tumor necrosis factor receptor genes, (TNF and / or TNF receptor).
Owner:SIRNA THERAPEUTICS INC

Method for sequencing a polynucleotide template

The invention relates to methods for pairwise sequencing of a double-stranded polynucleotide template, which methods result in the sequential determination of nucleotide sequences in two distinct and separate regions of the polynucleotide template. Using the methods of the invention it is possible to obtain two linked or paired reads of sequence information from each double-stranded template on a clustered array, rather than just a single sequencing read from one strand of the template.
Owner:ILLUMINA CAMBRIDGE LTD

Compositions and methods for inhibiting expression of Eg5 gene

The invention relates to a double-stranded ribonucleic acid (dsRNA) for inhibiting the expression of the Eg5 gene (Eg5 gene), comprising an antisense strand having a nucleotide sequence which is less that 30 nucleotides in length, generally 19-25 nucleotides in length, and which is substantially complementary to at least a part of the Eg5 gene. The invention also relates to a pharmaceutical composition comprising the dsRNA together with a pharmaceutically acceptable carrier; methods for treating diseases caused by Eg5 expression and the expression of the Eg5 gene using the pharmaceutical composition; and methods for inhibiting the expression of the Eg5 gene in a cell.
Owner:ALNYLAM PHARMA INC

Methods for genetic control of insect infestations in plants and compositions thereof

The present invention relates to control of pest infestation by inhibiting one or more biological functions. The invention provides methods and compositions for such control. By feeding one or more recombinant double stranded RNA molecules provided by the invention to the pest, a reduction in pest infestation is obtained through suppression of gene expression. The invention is also directed to methods for making transgenic plants that express the double stranded RNA molecules, and to particular combinations of transgenic pesticidal agents for use in protecting plants from pest infestation.
Owner:MONSANTO TECH LLC

Selective terminal tagging of nucleic acids

A method is provided for adding a terminal sequence tag to nucleic acid molecules for use in RNA or DNA amplification. The method involves contacting with a mixture of oligonucleotides, each having a sequence tag template, a random sequence and a blocked 3′ terminus, under conditions such that, the random sequence anneals with the nucleic acid molecules and the nucleic acid molecules are extended using the sequence tag template as template. For synthesis of RNA from DNA molecules having terminal sequence tags, the method includes forming DNA templates having a double stranded promoter sequence and synthesizing RNA from the DNA templates. For amplification of sequences from DNA molecules having terminal sequence tags, the method includes forming DNA templates by extension of one primer having a sequence that is complementary to the terminal sequence tag and another primer having a sequence that is derived form one of the DNA molecules.
Owner:EPICENT BIOTECH

Recombinase polymerase amplification

This disclosure describe three related novel methods for Recombinase-Polymerase Amplification (RPA) of a target DNA that exploit the properties of recombinase and related proteins, to invade double-stranded DNA with single stranded homologous DNA permitting sequence specific priming of DNA polymerase reactions. The disclosed methods have the advantage of not requiring thermocycling or thermophilic enzymes. Further, the improved processivity of the disclosed methods may allow amplification of DNA up to hundreds of megabases in length.
Owner:ABBOTT DIAGNOSTICS SCARBOROUGH INC

Double-Stranded Ribonucleic Acid with Increased Effectiveness in an Organism

The invention concerns a method for the targeted selection of a double-stranded ribonucleic acid (dsRNA) consisting of two single strands that exhibits increased effectiveness in inhibiting the expression of a target gene by means of RNA interference, whereby the sequences of the single strands of the dsRNA are selected in such a way that on both ends of the dsRNA the last complementary nucleotide pair is a G-C, or at least two of the last four complementary nucleotide pairs are G-C pairs; whereby the dsRNA exhibits a single-stranded overhang consisting of 1 to 4 unpaired nucleotides at the first end, and no overhang at the second end; whereby the unpaired nucleotide of the single-stranded overhang that is directly adjacent to the last complementary nucleotide pair contains a purine base.
Owner:ALNYLAM PHARM INC

Asymmetrical adapters and methods of use thereof

A pair of asymmetrical, partially double-stranded oligonucleotide adapters are provided wherein the pair of adapters comprise a first asymmetrical oligonucleotide adapter comprising a single-stranded 3′ overhang and a second asymmetrical double-stranded oligonucleotide adapter comprising a single-stranded 5′ overhang and at least one blocking group on the strand of said second asymmetrical oligonucleotide adapter that does not comprise the 5′ overhang. Also provided are a pair of double-stranded Y oligonucleotide adapters and a pair of double-stranded bubble oligonucleotide adapters and methods of using said asymmetrical adapters for amplification of at least one double stranded nucleic acid molecule, wherein the amplification produces a plurality of amplified nucleic acid molecules having a different nucleic acid sequence at each end are also described. Also provided is a method for exponentially amplifying one strand in a double-stranded nucleic acid molecule. Also provided are methods for preparing libraries of paired tags using COS-linkers. Also provided are cleavable adapters comprising an affinity tag and a cleavable linkage, wherein cleaving the cleavable linkage produces two complementary ends. Methods of using the cleavable adapters to produce a paired tag library are also described.
Owner:APPL BIOSYSTEMS INC

Positionally Modified Sirna Constructs

The present invention provides oligomeric compounds having sufficient complementarity to hybridize to a nucleic acid target and methods for their use in modulating gene expression. In one embodiment the oligomeric compounds comprise double stranded constructs wherein one of the strands capable of hybridizing to a nucleic acid target, and has a plurality of modified ribofuranosyl nucleosides at defined locations. The presence of modifications at such defined positions greatly enhances the properties of the corresponding compositions.
Owner:IONIS PHARMA INC

Methods of in vivo engineering of large sequences using multiple crispr/cas selections of recombineering events

The present invention provides a method for making a large nucleic acid having a defined sequence in vivo. The method combines recombineering techniques with a CRISPR / Cas system to permit multiple insertions of defined sequences into a target nucleic acid at one time, double stranded cleavage of target nucleic acids in which the defined sequences were not successfully inserted, and selection of successful recombinant cells. The method further includes repeating the process one or more times, using a successful recombinant from one round as the host cell for the next round.
Owner:AGILENT TECH INC

RNA interference mediated inhibition of gene expression using short interfering nucleic acid (siNA)

This invention relates to compounds, compositions, and methods useful for modulating gene expression using short interfering nucleic acid (siNA) molecules. In particular, the instant invention features small nucleic acid molecules, such as short interfering nucleic acid (siNA), short interfering RNA (siRNA), double-stranded RNA (dsRNA), micro-RNA (miRNA), and short hairpin RNA (shRNA) molecules and methods used to modulate the expression of genes, such as expressed pseudogenes associated with the maintenance or development of diseases, disorders, traits, and conditions in a subject or organism. The invention also provides small nucleic acid molecules with reduced or attenuated immunostimulatory properties and methods for designing and synthesizing such small nucleic acid molecules having improved toxicologic properties while retaining RNAi activity.
Owner:SIRNA THERAPEUTICS INC

Interfering RNA molecules

The present invention is related to a ribonucleic acid comprising a double stranded structure whereby the double-stranded structure comprises a first strand and a second strand, whereby the first strand comprises a first stretch of contiguous nucleotides and whereby said first stretch is at least partially complementary to a target nucleic acid, and the second strand comprises a second stretch of contiguous nucleotides whereby said second stretch is at least partially identical to a target nucleic acid, and whereby the double stranded structure is blunt ended.
Owner:SILENCE THERAPEUTIC AG

Method for pair-wise sequencing a plurity of target polynucleotides

The invention relates to methods for pairwise sequencing of a double-stranded polynucleotide template, which methods result in the sequential determination of nucleotide sequences in two distinct and separate regions of the polynucleotide template. Using the methods of the invention it is possible to obtain two linked or paired reads of sequence information from each double-stranded template on a clustered array, rather than just a single sequencing read from one strand of the template.
Owner:ILLUMINA CAMBRIDGE LTD

Methods of determining the presence of double stranded nucleic acids in a sample

Methods for determining the presence of double stranded nucleic acids in a sample are provided. In the subject methods, nucleic acids present in a fluid sample are translocated through a nanopore, e.g. by application of an electric field to the fluid sample. The current amplitude through the nanopore is monitored during the translocation process and changes in the amplitude are related to the passage of single- or double-stranded molecules through the nanopore. The subject methods find use in a variety of applications in which the detection of the presence of double-stranded nucleic acids in a sample is desired, e.g. in hybridization assays, such as Northern blot assays, Southern blot assays, array based hybridization assays, etc.
Owner:RGT UNIV OF CALIFORNIA

RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid (siNA)

The present invention concerns methods and reagents useful in modulating gene expression in a variety of applications, including use in therapeutic, diagnostic, target validation, and genomic discovery applications. Specifically, the invention relates to synthetic chemically modified small nucleic acid molecules, such as short interfering nucleic acid (siNA), short interfering RNA (siRNA), double-stranded RNA (dsRNA), micro-RNA (miRNA), and short hairpin RNA (shRNA) molecules capable of mediating RNA interference (RNAi) against target nucleic acid sequences. The small nucleic acid molecules are useful in the treatment of any disease or condition that responds to modulation of gene expression or activity in a cell, tissue, or organism.
Owner:SIRNA THERAPEUTICS INC

Identification and use of target genes for control of plant parasitic nematodes

The invention relates to identifying and evaluating target coding sequences for control of plant parasitic nematodes by inhibiting one or more biological functions, and their use. The invention provides methods and compositions for identification of such sequences and for the control of a plant-parasitic nematode population. By feeding one or more recombinant double stranded RNA molecules provided by the invention to the nematode, a reduction in disease may be obtained through suppression of nematode gene expression. The invention is also directed to methods for making transgenic plants that express the double stranded RNA molecules, and the plant cells and plants obtained thereby.
Owner:MONSANTO TECH LLC

Nucleic acid archiving

This invention is directed to a process for irreversibly binding nucleic acid to solid phase and corresponding processes for the utilization thereof. Nucleic acid is bound to solid phase matrixes exhibiting sufficient hydrophilicity and electropositivity to irreversibly bind the nucleic acids from a sample. These processes include nucleic acid (double or single stranded DNA and RNA) capture from high volume:low concentration specimens, buffer changes, washes, and volume reductions, and enable the interface of solid phase bound nucleic acid with enzyme, hybridization or amplification strategies. The invention, solid phase irreversibly bound nucleic acid, may be used, for example, in repeated analyses to confirm results or test additional genes in both research and commercial applications. Further, a method is described for virus extraction, purification, and solid phase amplification from large volume plasma specimens.
Owner:APPL BIOSYSTEMS INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products