Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

3680 results about "Somatic cell" patented technology

A somatic cell (from the Greek σῶμα sôma, meaning "body") or vegetal cell is any biological cell forming the body of an organism; that is, in a multicellular organism, any cell other than a gamete, germ cell, gametocyte or undifferentiated stem cell.

RNA preparations comprising purified modified RNA for reprogramming cells

The present invention provides compositions and methods for reprogramming somatic cells using purified RNA preparations comprising single-strand mRNA encoding an iPS cell induction factor. The purified RNA preparations are preferably substantially free of RNA contaminant molecules that: i) would activate an immune response in the somatic cells, ii) would decrease expression of the single-stranded mRNA in the somatic cells, and / or iii) active RNA sensors in the somatic cells. In certain embodiments, the purified RNA preparations are substantially free of partial mRNAs, double-stranded RNAs, un-capped RNA molecules, and / or single-stranded run-on mRNAs.
Owner:THE TRUSTEES OF THE UNIV OF PENNSYLVANIA

Methods and compositions for organ and tissue functionality

Materials and methods for treating tissue defects in human or animal tissues using implantable cells are described. Further, culture techniques and factors for enhancing these procedures, and cell survival and adaptation are described. Many of the tissue defects may be treated with autologous cells, while applications involving non-autologous cells or stem cells are also described.
Owner:DASK TECH

Recombinant poxviruses having foreign DNA expressed under the control of poxvirus regulatory sequences

Recombinant poxviruses, such as vaccinia, are provided that comprises a segment comprised of (A) a first DNA sequence encoding a polypeptide that is foreign to poxvirus and (B) a poxvirus transcriptional regulatory sequence, wherein (i) said transcriptional regulatory sequence is adjacent to and exerts transcriptional control over said first DNA sequence and (ii) said segment is positioned within a nonessential genomic region of said recombinant poxvirus. Vaccines, carriers, cells, and media comprising recombinant poxviruses, and methods of immunization with recombinant poxviruses also are provided.
Owner:DEPT OF HEALTH & HUMAN SERVICES UNITED STATES OF AMERICA AS REPRESENTED BY THE SEC

Use of RNA for reprogramming somatic cells

InactiveUS20110065103A1Promotes reprogrammingBlood/immune system cellsDrug compositionsReprogrammingSomatic cell
The present invention provides methods for de-differentiating somatic cells into stem-like cells without generating embryos or fetuses. More specifically, the present invention provides methods for effecting the de-differentiation of somatic cells to cells having stem cell characteristics, in particular pluripotency, by introducing RNA encoding factors inducing the de-differentiation of somatic cells into the somatic cells and culturing the somatic cells allowing the cells to de-differentiate.
Owner:BIONTECH AG +2

Somatic cell reprogramming

ActiveUS20080233610A1High nucleus to cytoplasm ratioImprove effectivenessNervous disorderVirusesSomatic cellCell biology
The present invention relates to methods for reprogramming a somatic cell to pluripotency by administering into the somatic cell at least one or a plurality of potency-determining factors. The invention also relates to pluripotent cell populations obtained using a reprogramming method.
Owner:WISCONSIN ALUMNI RES FOUND

Pluripotent stem cells derived without the use of embryos or fetal tissue

This invention provides a method for deriving precursors to pluripotent non-embryonic stem (P-PNES) and pluripotent non-embryonic stem (PNES) cell lines. The present invention involves nuclear transfer of genetic material from a somatic cell into an enucleated, zona pellucida free human ooplastoid having a reduced amount of total cytoplasm. The present invention provides a new source for obtaining human and other animal pluripotent stem cells. The source utilizes as starting materials an oocyte and a somatic cell as the starting materials but does not require the use, creation and/or destruction of embryos or fetal tissue and does not in any way involve creating a cloned being. The oocyte never becomes fertilized and never develops into an embryo. Rather, portions of the oocyte cytoplasm are extracted and combined with the nuclear material of individual mature somatic cells in a manner that precludes embryo formation. Murine, bovine, and human examples of the procedure are demonstrated. Subsequently, the newly constructed P-PNES cells are cultured in vitro and give rise to PNES cells and cell colonies. Methods are described for culturing the P-PNES cells to yield purified PNES cells which have the ability to differentiate into cells derived from mesoderm, endoderm, and ectoderm germ layers. Methods are described for maintaining and proliferating PNES cells in culture in an undifferentiated state. Methods and results are described for analysis and validation of pluripotency of PNES cells including cell morphology, cell surface markers, pluripotent tumor development in SCID mouse, karyotyping, immortality in in vitro culture.
Owner:STEMA

Mutational analysis of plasma DNA for cancer detection

ActiveUS20140100121A1Accurate parameterLevel of heterogeneity of tumorsSequential/parallel process reactionsMicrobiological testing/measurementMutation frequencyBlood plasma
A frequency of somatic mutations in a biological sample (e.g., plasma or serum) of a subject undergoing screening or monitoring for cancer, can be compared with that in the constitutional DNA of the same subject. A parameter can derived from these frequencies and used to determine a classification of a level of cancer. False positives can be filtered out by requiring any variant locus to have at least a specified number of variant sequence reads (tags), thereby providing a more accurate parameter. The relative frequencies for different variant loci can be analyzed to determine a level of heterogeneity of tumors in a patient.
Owner:THE CHINESE UNIVERSITY OF HONG KONG

Circulating Mutant DNA to Assess Tumor Dynamics

DNA containing somatic mutations is highly tumor specific and thus, in theory, can provide optimum markers. However, the number of circulating mutant gene fragments is small compared to the number of normal circulating DNA fragments, making it difficult to detect and quantify them with the sensitivity required for meaningful clinical use. We apply a highly sensitive approach to quantify circulating tumor DNA (ctDNA) in body samples of patients. Measurements of ctDNA can be used to reliably monitor tumor dynamics in subjects with cancer, especially those who are undergoing surgery or chemotherapy. This personalized genetic approach can be generally applied.
Owner:THE JOHN HOPKINS UNIV SCHOOL OF MEDICINE

Compositions and methods for reprogramming mammalian cells

The present invention relates to methods for changing the state of differentiation of a eukaryotic cell, the methods comprising introducing mRNA encoding one or more reprogramming factors into a cell and maintaining the cell under conditions wherein the cell is viable and the mRNA that is introduced into the cell is expressed in sufficient amount and for sufficient time to generate a cell that exhibits a changed state of differentiation compared to the cell into which the mRNA was introduced, and compositions therefor. For example, the present invention provides mRNA molecules and methods for their use to reprogram human somatic cells into pluripotent stem cells.
Owner:CELLSCRIPT

Drug conjugate composition

The invention provides a liquid composition and a lyophilized composition comprising a therapeutically effective amount of a conjugate comprising an antibody chemically coupled to a maytansinoid. The invention further provides a method for killing a cell in a human comprising administering to the human either of the compositions such that the antibody binds to the surface of the cell and the cytotoxicity of the maytansinoid is activated, whereby the cell is killed.
Owner:IMMUNOGEN INC

Generation of human embryonc stem-like cells using intronic RNA

ActiveUS20080293143A1Stable and relatively long-term effectDelivery stabilityOther foreign material introduction processesElectrical/wave energy microorganism treatmentReprogrammingMammal
This invention generally relates to a method for developing, generating and selecting human embryonic stem (hES)-like pluripotent cells using transgenic expression of intronic microRNA-like RNA agents. More particularly, the present invention relates to a method and composition for generating a non-naturally occurring intron and its intronic components capable of being processed into mir-302-like RNA molecules in mammalian cells and thus inducing certain specific gene silencing effects on differentiation-related and fate-determinant genes of the cells, resulting in reprogramming the cells into a pluripotent embryonic stem (ES)-cell-like state. The ES-like cells so obtained are strongly express hES cell markers, such as Oct3 / 4, SSEA-3 and SSEA-4, and can be guided into various tissue cell types by treating certain hormones and / or growth factors under a feeder-free cell culture condition in vitro, which may be used for transplantation and gene therapies. Therefore, the present invention offers a simple, effective and safe gene manipulation approach for not only reprogramming somatic cells into ES-like pluripotent cells but also facilitating the maintenance of pluripotent and renewal properties of ES cells under a feeder-free cell culture condition, preventing the tedious retroviral insertion of four large transcription factor genes into one single cell as used in the previous iPS methods.
Owner:MELLO BIOTECH +1

Antibodies with immune effector activity and that internalize in folate receptor alpha-positive cells

InactiveUS20060239910A1Improve anti-tumor activityEnhanced antibody-dependent cellular cytotoxicityOrganic active ingredientsNanomedicineDrug specific IgEFolate Receptor Alpha
This invention relates to the use of monoclonal and polyclonal antibodies that specifically bind to and have the ability in the alternative to become internalized by cells expressing folate receptor alpha (FRA) and to induce an immune effector activity such as antibody-dependent cellular cytotoxicity. The antibodies are useful in specific delivery of pharmacologic agents to FRA-expressing cells as well as in eliciting an immune-effector activity particularly on tumor cells and precursors. The invention is also related to nucleotides encoding the antibodies of the invention, cells expressing the antibodies; methods of detecting cancer cells; and methods of treating cancer using the antibodies.
Owner:EISAI INC

Methods for Use in Human-Adapting Monoclonal Antibodies

Methods useful for human adapting non-human monoclonal antibodies are disclosed. The methods select candidate human antibody framework sequences from a database of human germline genes or human sequences with somatic mutations.
Owner:JANSSEN BIOTECH INC

Cas9 effector-mediated regulation of transcription, differentiation and gene editing/labeling

The present disclosure relates to methods of and systems for modifying the transcriptional regulation of stem or progenitor cells to promote their differentiation or reprogramming of somatic cells. Further, the labeling and editing of human genomic loci in live cells with three orthogonal CRISPR / Cas9 components allow multicolor detection of genomic loci with high spatial resolution, which provides an avenue for barcoding elements of the human genome in the living state.
Owner:UNIV OF CENT FLORIDA RES FOUND INC +1

Reprogramming of somatic cells

The disclosure relates to a method of reprogramming one or more somatic cells, e.g., partially differentiated or fully / terminally differentiated somatic cells, to a less differentiated state, e.g., a pluripotent or multipotent state. In further embodiments the invention also relates to reprogrammed somatic cells produced by methods of the invention, to uses of said cells, and to methods for identifying agents useful for reprogramming somatic cells.
Owner:WHITEHEAD INST FOR BIOMEDICAL RES

SARS-CoV-2 vaccine and preparation method thereof

The invention relates to a preparation method for a vaccine capable of treating and / or preventing SARS-CoV-2 infection or COVID-19 diseases. The core antigen of the vaccine comprises the RBD (receptor binding zone) fusion protein of the SARS-CoV-2, and a vaccine form comprises an RBD fusion protein subunit vaccine, an RBD fusion protein mRNA vaccine or an RBD fusion protein adenovirus vector vaccine. The above vaccine immunizes an organism, and immune reaction for treating and / or preventing the SARS-CoV-2 infection can be generated so as to be used for treating and / or preventing COVID-19. The invention also relates to an RBD fusion gene, the RBD fusion protein, a carrier, a cell, a preparation method, a treatment method or a pharmacy purpose of the SARS-CoV-2.
Owner:CANSINO BIOLOGICS INC

Pluripotent stem cells obtained by non-viral reprogramming

Methods for reprogramming primate somatic cells to pluripotency using an episomal vector that does not encode an infectious virus are disclosed. Pluripotent cells produced in the methods are also disclosed.
Owner:WISCONSIN ALUMNI RES FOUND

Detecting mutations for cancer screening and fetal analysis

Embodiments are related to the accurate detection of somatic mutations in the plasma (or other samples containing cell-free DNA) of cancer patients and for subjects being screened for cancer. The detection of these molecular markers would be useful for the screening, detection, monitoring, management, and prognostication of cancer patients. For example, a mutational load can be determined from the identified somatic mutations, and the mutational load can be used to screen for any or various types of cancers, where no prior knowledge about a tumor or possible cancer of the subject may be required. Embodiments can be useful for guiding the use of therapies (e.g. targeted therapy, immunotherapy, genome editing, surgery, chemotherapy, embolization therapy, anti-angiogenesis therapy) for cancers. Embodiments are also directed to identifying de novo mutations in a fetus by analyzing a maternal sample having cell-free DNA from the fetus.
Owner:THE CHINESE UNIVERSITY OF HONG KONG

Methods and compositions for printing biologically compatible nanotube composites of autologous tissue

A method of carrying out an autologous tissue implant in a subject in need thereof is carried out by: (a) forming an autologous tissue implant from autologous cells collected from a subject (e.g., by ink-jet printing, the autologous cells and the scaffold, separately or together), and then (b) implanting the autologous tissue implant in said subject.
Owner:WAKE FOREST UNIV HEALTH SCI INC

Compositions and methods for reprogramming eukaryotic cells

The present invention relates to methods for changing the state of differentiation of a eukaryotic cell, the methods comprising introducing mRNA encoding one or more reprogramming factors into a cell and maintaining the cell under conditions wherein the cell is viable and the mRNA that is introduced into the cell is expressed in sufficient amount and for sufficient time to generate a cell that exhibits a changed state of differentiation compared to the cell into which the mRNA was introduced, and compositions therefor. For example, the present invention provides mRNA molecules and methods for their use to reprogram human somatic cells into pluripotent stem cells.
Owner:THE TRUSTEES OF THE UNIV OF PENNSYLVANIA

Method of screening reprogramming factor, reprogramming factor screened by the method, method of using the reprogramming factor, method of differentiating undifferentiated fused cells and method of constructing cell, tissues and organs

InactiveUS20050130144A1Rejection reaction in the recipient against the transplantation graft can be more efficiently suppressedCompound screeningApoptosis detectionMethod screeningSomatic cell
By exposing somatic cells to a component derived from ES cells to act on somatic cells and detecting the activity thereof, the reprogramming agent can be screened. Further, by exposing somatic cells to a component including a reprogramming agent or an isolated reprogramming agent, the somatic cells can be reprogrammed. Furthermore, according to the present invention, since the tetraploid cells have proliferating capability and pluripotency, such cells can be differentiated and the cells, tissues or organs, which can be used for transplantation, can be produced.
Owner:REPROCELL +1

OCT4 and SOX2 with SV40 T antigen produce pluripotent stem cells from primate somatic cells

Methods for reprogramming primate somatic cells to pluripotency using an episomal vector that does not encode an infectious virus are disclosed. Pluripotent cells produced in the methods are also disclosed.
Owner:WISCONSIN ALUMNI RES FOUND
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products