Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

843 results about "Dark current" patented technology

In physics and in electronic engineering, dark current is the relatively small electric current that flows through photosensitive devices such as a photomultiplier tube, photodiode, or charge-coupled device even when no photons are entering the device; it consists of the charges generated in the detector when no outside radiation is entering the detector. It is referred to as reverse bias leakage current in non-optical devices and is present in all diodes. Physically, dark current is due to the random generation of electrons and holes within the depletion region of the device.

Image sensor for reduced dark current

A method and structure for reducing dark current in an image sensor includes preventing unwanted electrons from being collected in the photosensitive region of the image sensor. In one embodiment, dark current is reduced by providing a deep n-type region having an n-type peripheral sidewall formed in a p-type substrate region underlying a pixel array region to separate the pixel array region from a peripheral circuitry region of the image sensor. The method and structure also provide improved protection from blooming.
Owner:APTINA IMAGING CORP

Front-side illuminated, back-side contact double-sided pn-junction photodiode arrays

The present invention is a photodiode detector array for use in computerized tomography (CT) and non-CT applications. Specifically, the present invention is a high-density photodiode arrays, with low dark current, low capacitance, high signal to noise ratio, high speed, and low crosstalk that can be fabricated on relatively large substrate wafers. More specifically the photodiode array of the present invention is fabricated such that the PN-junctions are located on both the front side and back side surfaces of the array, and wherein the front side PN-junction is in electrical communication with the back side PN-junction. Still more specifically, the present invention is a photodiode array having PN-junctions that are electrically connected from the front to back surfaces and which can be operated in a fully depleted mode at low reverse bias.
Owner:UDT SENSORS +1

Sensor dark pixel offset estimation

Examples of systems and methods to provide estimates of dark current for pixels of a photosensor as a function of the temperature of the sensor and the gain applied to the photosensor are described. In various implementations, the dark current estimated for each pixel can depend at least partly on a global scale factor and a global bias that depend on temperature and gain and a temperature-independent and gain-independent offset value for each pixel. The scale, bias, and offsets may be determined from multiple dark field images taken by the sensor over a range of operating temperatures. In some cases, the scale and bias can be determined using a subset of less than all the image pixels. Scale and bias derived for a particular sensor can be used in the calibration of different sensors.
Owner:PLANET LABS PBC

Solid-state image sensing device, image reading apparatus, and image forming apparatus

A solid-state image sensing device includes: a photoelectric conversion unit that converts light into electrical signals for respective pixels and outputs the electrical signals; a signal separation unit that separates an offset signal, which is generated due to dark current, from each of the electrical signals outputted by the photoelectric conversion unit and outputs image signals which are electrical signals converted from light for the respective pixels; and a signal adding unit that adds the image signals, which is outputted from the signal separation unit, for each group of a plurality of pixels.
Owner:RICOH KK

Photodetector and production method thereof

The invention offers a photodetector that has an N-containing InGaAs-based absorption layer having a sensitivity in the near-infrared region and that suppresses the dark current and a production method thereof. The photodetector is provided with an InP substrate 1, an N-containing InGaAs-based absorption layer 3 positioned above the InP substrate 1, a window layer 5 positioned above the N-containing InGaAs-based absorption layer 3, and an InGaAs buffer layer 4 positioned between the N-containing InGaAs-based absorption layer 3 and the window layer 5.
Owner:SUMITOMO ELECTRIC IND LTD

Multiband Photodetector Utilizing Unipolar and Bipolar Devices

Multi-band photodetectors can be formed by series connecting unipolar and, optionally, bipolar semiconductor structures, each having different photodetection bands. Under default mode of operation, the detector with highest resistance and lowest current will be the current limiting device and will be the active photodetector. When the active photodetector is illuminated with strong light in its own detection band it will be optically biased. This active photodetector will no longer be the highest resistance device, and the next photodetector will be the active photodetector. Repeating this operation pattern, allows switching photodetection bands of the multi-band photodetector. The resistances, dark current and photocurrent of the devices should be engineered to have proper switching. Moreover, the illuminating surface, and photodetector placement should be optimized for proper light biasing. The current passing through the device will always be equal to the current of the active photodetector.
Owner:ARIZONA STATE UNIVERSITY

A PIN structure TiO2 base ultraviolet detector and its making method

InactiveCN101055902AHigh external quantum efficiency and sensitivityQuick responseFinal product manufactureSemiconductor devicesBroadbandLight source
The invention relates to a PIN structural TiO2 base ultraviolet light detector for ultraviolet light detector and its manufacturing method. The ultraviolet light detector comprises a conductive substrate, a N-type semiconductor contact layer, an intrinsic TiO2 active layer and a P-type wide-band-gap semiconductor contact layer. The manufacturing method of the ultraviolet light detector comprises the following step: preparing the N-type semiconductor contact layer on the conductive substrate after pretreatment; preparing the intrinsic TiO2 active layer on the N-type semiconductor contact layer; carrying out a partial etching to the around part of the active layer by using a dry etching technology; preparing the P-type contact layer on the etching part of the active layer; preparing a P-type ohmic electrode on the P-type contact layer; and preparing a N-type ohmic electrode on the conductive substrate. The invention has a plurality of advantages such as high external quantum efficiency and sensitivity, rapid response speed, small dark current, small and exquisite volume, cheap cost, and long service life. The film preparation technology is convenient and maturate. The interference of light sources except the ultraviolet ligh may be prevented.
Owner:DALIAN MARITIME UNIVERSITY

Testing method and testing device of avalanche photodiode

The invention discloses a testing method of an avalanche photodiode, which is characterized by comprising the following steps that (1), a function control circuit and a testing circuit are arranged on a circuit mainboard, and the function control circuit tests the avalanche photodiode through controlling the testing circuit; (2), a sensitivity testing amplitude limiting amplification circuit, a reverse breakdown voltage testing circuit and a light current and dark current testing circuit are arranged in the testing circuit in Step (1); and (3), a Boost high voltage generation circuit, a linear voltage stabilization filter circuit, a constant current source generation circuit, a feedback type IV (current-voltage) conversion circuit, an isolated power supply circuit and an optocoupler transmission circuit which are connected sequentially are arranged in the testing circuits in Step (2). The invention further discloses a testing device of the avalanche photodiode, which implements the method.
Owner:GUANGDONG RUIGU OPTICAL NETWORK COMM CO LTD

Avalanche photo-diode based on AlInAsSb body material as multiplication region and preparation method therefor

The invention provides an avalanche photodiode based on AlInAsSb body material as the multiplication region, comprising: a substrate; a buffer layer epitaxially on the substrate; an N-type ohmic contact layer epitaxially on the buffer layer and having a cross section of "" Convex" shape, its lower half is consistent with the shape of the substrate, and its upper half is cylindrical; the avalanche multiplication layer is epitaxial on the upper surface of the upper half of the N-type ohmic contact layer, composed of AlxIn1‑xAsySb1‑y Bulk material preparation, the doping concentration is less than 1016cm-3, the value range of x is: 0≤x≤1, the value range of y is: 0.08≤y≤1; the P-type charge layer is epitaxial on the avalanche multiplication layer ; The light absorbing layer is epitaxial on the P-type charge layer; and the P-type ohmic contact layer is epitaxially on the light absorbing layer. The avalanche photodiode has the advantages of low noise and high gain-bandwidth product, and at the same time effectively reduces the dark current, which not only meets the requirement of high sensitivity of the photodetector, but also realizes the design of energy band engineering and broadens its application range.
Owner:INST OF SEMICONDUCTORS - CHINESE ACAD OF SCI

Method for preparing silicon-based SIS heterojunction photoelectric device

The invention relates to a method for preparing a direct current (DC) magnetron sputtering AZO/SiO2/p-SiSIS heterojunction photoelectric device, and belongs to the technical field of methods for preparing silicon-based heterojunction photoelectric devices. By growth of an ultrathin SiO2 layer through low-temperature thermal oxidation, DC magnetron sputtering of an AZO emitter, antireflection and collection of an electrode film, a novel AZO/SiO2/p-SiSIS ultraviolet-visible-near-infrared broad-spectrum heterojunction photoelectric device is successfully prepared. An I/V curve of the prepared AZO/SiO2/p-SiSIS heterojunction has good rectification characterisitic and very low reverse dark current, so a good heterojunction diode is formed between AZO and p-Si. Under the condition of AM 1.5 illumination, the open-circuit voltage VOC is 230mV, the photoelectric conversion efficiency eta is 0.025 percent, and the photovoltaic effect is obvious. By combining different characteristics of a wide band gap of the AZO and a relatively narrow band gap of a Si material for mutual complementation, the SIS heterojunction can be developed into a low-cost solar cell, and also can become an excellent-performance ultraviolet-visible-near-infrared enhanced broad-spectrum photoelectric detector.
Owner:SHANGHAI UNIV

Photoelectric conversion element, method for using the same, imaging device, photosensor, and compound

An object of the present invention is to provide a photoelectric conversion element having a photoelectric conversion film which exhibits heat resistance, a high photoelectric conversion efficiency, a low level of dark currents, rapid response, and sensitivity characteristics to red and can be produced by a vapor deposition processing that is continuously performed under a high-temperature condition. The photoelectric conversion element of the present invention is a photoelectric conversion element in which a conductive film, a photoelectric conversion film containing a photoelectric conversion material, and a transparent conductive film are laminated on one another in this order, wherein the photoelectric conversion material includes a compound represented by Formula (1).
Owner:FUJIFILM CORP

Dark IV monitoring system for photovoltaic installations

A photovoltaic (PV) monitoring system performs dark current and dark IV testing of PV installations; computes the passive electrical characteristics of the installed array; determines the performance status and likely cause of underperformance; and communicates the collected data.
Owner:CRITES DAVID E

Diffusion technology for reducing dark current of metallurgical silicon solar battery

The invention discloses a diffusion technology for reducing dark current of a metallurgical silicon solar battery, which includes the steps of firstly, carrying out concentrated phosphorus diffusion at the low temperature: feeding from a high-concentration phosphorus source for diffusion at the low temperature so as to form high-concentration phosphor doping; secondly, performing phosphorus gettering for a long time at the high temperature: releasing impurities such as deposited impurities, displacement impurities or other impurity complexes of iron, carbon, boron, oxygen and the like into interstitial impurities at the high temperature, so that the interstitial impurities quickly release into a phosphorosilicate glass layer with high solid solubility, high-temperature phosphorus gettering is completed, and the minority carrier lifetime of a body is prolonged; and thirdly, propelling at the lower temperature: at the lower temperature, propelling the junction depth, adjusting to square resistance meeting technological requirements, and lowering the solid solubility of the impurities in a surface concentrated area along with the temperature, so that the interstitial impurities turn to the deposited impurities, the complex impurities and the like. A metallurgical crystal silicon wafer is diffused by means of the diffusion technology, so that the dark current of the solar battery can be effectively reduced, and the conversion efficiency of the solar battery is improved.
Owner:HEFEI & SOLAR TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products