Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

98 results about "Coefficient quantization" patented technology

Coefficient Quantization. Quantization is the process of reducing the number of bits needed to store an integer value by reducing the precision of the integer. Given a matrix of DCT coefficients, we can generally reduce the precision of the coefficients more and more as we move away from the DC coefficient.

Method and apparatus for reducing quantization-induced beam errors by selecting quantized coefficients based on predicted beam quality

A method and apparatus for correcting a beam error is disclosed. One embodiment of the method comprises the steps of selecting beamweight coefficients based on the satellite orbital data, evaluating an effect of quantization of the beamweight coefficients on the beam error, and selecting beamweight coefficients based at least in part upon the evaluation of the effect of beamweight coefficient quantization on beam error. One embodiment of the apparatus comprises a beamweight correction module for selecting beamweight coefficients based on satellite orbital data, for evaluating the effect of quantization of the beamweight coefficients on beam error, and for selecting beamweight coefficients based at least in part upon the evaluation of the effect of beamweight coefficient quantization on beam error. The beamweight correction module comprises a beamweight generator and a beamweight quantizer for quantizing beamweights from the beamweight generator.
Owner:THE BOEING CO

Image processing apparatus and method

The present disclosure relates to an image processing device and a method capable of suppressing the reduction of an image quality due to encoding / decoding. The image processing device includes: a quantization unit that when orthogonal transform processing is skipped with respect to a current block, quantizes all components of the current block using one weighting coefficient and when the orthogonal transform processing is performed on the current block, quantizes each component of the current block using a quantization matrix; an encoding unit that encodes the coefficient of the current block which is quantized by the quantization unit; and a transmission unit that transmits the coded data of the current block which is obtained by being encoded by the encoding unit. The present disclosure can be applied to, for example, an image processing device.
Owner:SONY CORP

Method for channel state feedback by quantization of time-domain coefficients

The present invention relates to a channel state transmission method using time domain coefficient quantization. A terminal measures channel information in the time domain and transmits it to a base station. In this instance, a multipath frequency selective fading channel is displayed in a tapped delay line format configured with a per-path path delay value and a path gain in the time domain, differentiates a quantization level for each path gain for more efficient transmission, quantizes the same, and transmits it to a transmitter. Therefore, while the amount of bandwidths required for transmitting state information from the terminal to the base station is reduced, the base station can efficiently acquire channel state information on the entire bandwidths. Also, the base station transmits signals to many terminals through beamforming by using the acquired reliable channel state information, thereby increasing the terminal's signal receiving performance.
Owner:ELECTRONICS & TELECOMM RES INST +2

Wavelet coefficient quantization method using human visual model in image compression

A wavelet coefficient quantization method using a human visual model in an image compression process is provided, which is particularly suitable for remote sensing image compression. A wavelet-domain visual quantization model is obtained through experiments based on human visual characteristics, so as to reflect the relation between distortion of wavelet coefficient blocks and human visual characteristics. The model includes a luminance component, a masking component and a frequency component, where the luminance component is calculated by low frequency coefficients after the kth level wavelet transform, the masking component is calculated by high frequency coefficients of the second and third levels, and the frequency component is calculated by a statistical method. The method may be used in combination with any mainstream wavelet compression method such as EZW, SPIHT or EBCOT.
Owner:BEIHANG UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products