Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1114 results about "Quadrature signal" patented technology

A quadrature signal is a two-dimensional signal whose value at some instant in time can be specified by a single complex number having two parts; what we call the real part and the imaginary part. (The words real and imaginary, although traditional, are unfortunate because of their meanings in our every day speech.

System and method for distance measurement by inphase and quadrature signals in a radio system

A system and a method for distance measurement utilizes a radio system. The distance is measured by determining the time it takes a pulse train to travel from a first radio transceiver to a second radio transceiver and then from the second radio transceiver back to the first radio transceiver. The actual measurement is a two step process. In the first step, the distance is measured in coarse resolution, and in the second step, the distance is measured in fine resolution. A first pulse train is transmitted using a transmit time base from the first radio transceiver. The first pulse train is received at a second radio transceiver. The second radio transceiver synchronizes its time base with the first pulse train before transmitting a second pulse train back to the first radio transceiver, which then synchronizes a receive time base with the second pulse train. The time delay between the transmit time base and the receive time base can then be determined. The time delay indicates the total time of flight of the first and second pulse trains. The time delay comprises coarse and fine distance attributes. The coarse distance between the first and second radio transceivers is determined. The coarse distance represents the distance between the first and second radio transceivers in coarse resolution. An in phase (I) signal and a quadrature (Q) signal are produced from the time delay to determine the fine distance attribute. The fine distance indicates the distance between the first and second transceivers in fine resolution. The distance between the first and second radio transceivers is then determined from the coarse distance and the fine distance attributes.
Owner:HUMATICS CORP

Systems, Methods, and Apparatuses for Multi-Path Orthogonal Recursive Predistortion

System and methods are provided for multi-path orthogonal recursive predistortion. The systems and methods may include generating a first orthogonal signal and a second orthogonal signal, where the first and second signals are orthogonal components of an input signal and processing, at a first predistortion module, the first orthogonal signal and a first error correction signal to generate a first predistorted signal. The system and methods may also include processing, at a second predistortion module, the second orthogonal signal and a second error correction signal to generate a second predistorted signal, and providing the generated first and second predistorted signals to a nonlinear device, where the nonlinear device generates an output based upon the first and second predistorted signals, where the first error correction signal is determined based upon an analysis of the output and the first predistorted signal, and where the second error correction signal is determined based upon an analysis of the output and the second predistorted signal.
Owner:SAMSUNG ELECTRO MECHANICS CO LTD

Apparatus for receiving signal and method of compensating phase mismatch thereof

An apparatus for receiving a signal includes a training signal generator generating a training signal corresponding to each frequency channel; an IQ signal generator generating a first in-phase signal and a first quadrature-phase signal using the training signal in a first operation mode and generating a second in-phase signal and a second quadrature-phase signal using a receiving signal in a second operation mode; an IQ mismatch compensator which makes the first in-phase signal and the first quadrature-phase signal generated in response to each frequency channel converge for a reference time in the first operation mode to obtain a phase mismatch compensation coefficient and after obtaining a phase mismatch compensation coefficient with respect to selected frequency channels and generating a look-up table using the phase mismatch compensation coefficient, compensates the second in-phase signal and the second quadrature-phase signal using the phase mismatch compensation coefficient included in the look-up table in the second operation mode; and a memory in which the look-up table is stored.
Owner:SAMSUNG ELECTRONICS CO LTD

Cloverleaf microgyroscope with electrostatic alignment and tuning

A micro-gyroscope (10) having closed loop output operation by a control voltage (Vty), that is demodulated by a drive axis (x-axis) signal Vthx of the sense electrodes (S1, S2), providing Coriolis torque rebalance to prevent displacement of the micro-gyroscope (10) on the output axis (y-axis) Vthy˜0. Closed loop drive axis torque, Vtx maintains a constant drive axis amplitude signal, Vthx. The present invention provides independent alignment and tuning of the micro-gyroscope by using separate electrodes and electrostatic bias voltages to adjust alignment and tuning. A quadrature amplitude signal, or cross-axis transfer function peak amplitude is used to detect misalignment that is corrected to zero by an electrostatic bias voltage adjustment. The cross-axis transfer function is either Vthy / Vty or Vtnx / Vtx. A quadrature signal noise level, or difference in natural frequencies estimated from measurements of the transfer functions is used to detect residual mistuning, that is corrected to zero by a second electrostatic bias voltage adjustment.
Owner:CALIFORNIA INST OF TECH +1

Digital transmitters for wireless communication

Digital transmitters having improved characteristics are described. In one design of a digital transmitter, a first circuit block receives inphase and quadrature signals, performs conversion from Cartesian to polar coordinates, and generates magnitude and phase signals. A second circuit block (which may include a delta-sigma modulator or a digital filter) generates an envelope signal based on the magnitude signal. A third circuit block generates a phase modulated signal based on the phase signal. The third circuit block may include a phase modulating phase locked loop (PLL), a voltage controlled oscillator (VCO), a saturating buffer, and so on. A fourth circuit block (which may include one or more exclusive-OR gates or an amplifier with multiple gain states) generates a digitally modulated signal based on the envelope signal and the phase modulated signal. A fifth circuit block (which may include a class D amplifier and / or a power amplifier) amplifies the digitally modulated signal and generates an RF output signal.
Owner:QUALCOMM INC

Ultrasound imaging system and method based on simultaneous multiple transmit-focusing using weighted orthogonal chirp signals

The present invention discloses an ultrasound imaging system and method based on simultaneous multiple transmit-focusing using the weighted orthogonal chirp signals so that resolution of an ultrasound image is enhanced without sacrifice in the frame rate. The ultrasound imaging system according to the present invention includes: a storing means for storing weighted orthogonal signals including N number of orthogonal codes wherein the orthogonal codes are orthogonal to each other; a transmitter for transmitting simultaneously the weighted orthogonal signals as ultrasound transmission signals to corresponding N number of focal points within the target object; a receiver for receiving signals reflected from the N number of focal points corresponding to the transmitted ultrasound signals; a pulse-compressor for pulse-compressing with respect to each orthogonal code by extracting the stored N number of orthogonal codes from the reflected signals; a producer for producing receive-focused signals from the pulse-compressed signals; and a display for displaying the receive-focused signals by processing them. As a result, transmission signals are simultaneously transmitted to the plurality of focal points and received signals are separated on reception, thereby improving resolution without sacrifice in the frame rate.
Owner:MEDISON CO LTD

Doherty Power Amplifier Network

The present invention is directed to a network that includes an output matching network coupled to an amplifier. The output matching network is configured to transform the at least one amplifier transistor output impedance to an output matching network impedance. A combiner network is coupled to the output matching network. The combiner network includes a first quarter wavelength transmission line coupled between the in-phase signal path and a combiner node. The combiner network further includes a bandwidth enhancement element coupled to the quadrature signal path at the combiner node and an impedance transformation element coupled between the combiner node and a load. The impedance transformation element is configured to substantially transform a combined output matching network impedance at the combiner node to the load impedance.
Owner:TTM TECH INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products