Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1018results about How to "Improve proton conductivity" patented technology

Proton conductor and method for producing the same

A hyperbranch polymer is bonded to a pore surface existing on a SiO2 glass porous body, such that the hyperbranch polymer is bonded to the pore surface only at the base end moiety. The hyperbranch polymer has a first generation branched moiety branched from the base end moiety, a second generation branched moiety further branched from the first generation branched moiety, and a third generation branched moiety further branched from the second generation branched moiety. A functional group, such as sulfonic acid group, from which a proton is capable of being dissociated, is bonded by substitution to the terminal end of the third generation branched moiety.
Owner:HONDA MOTOR CO LTD

Method for manufacturing fuel cell elecrolyte film-electrode bond

In order to obtain an electrolyte membrane-electrode assembly using a thin electrolyte membrane, the present invention provides a production method of an electrolyte membrane-electrode assembly comprising: a step of forming a hydrogen ion-conductive polymer electrolyte membrane on a base material; a treatment step of reducing adhesion force between the base material and the hydrogen ion-conductive polymer electrolyte membrane; a step of separating and removing the base material; and a step of bonding a catalyst layer and a gas diffusion layer onto the hydrogen ion-conductive polymer electrolyte membrane, and, in order to obtain an electrolyte membrane-electrode assembly which has a catalyst without clogging and is excellent in electrode characteristics, the present invention provides a production method of an electrolyte membrane-electrode assembly comprising: a step of bonding a hydrogen ion-conductive polymer electrolyte membrane and a catalyst layer via a coating layer; a step of removing the coating layer; and a step of obtaining an electrolyte membrane-electrode assembly by forming a gas diffusion layer on the catalyst layer.
Owner:PANASONIC CORP

Polymer electrolyte material, polymer electrolyte part, membrane electrode composite and polymer electrolyte type fuel cell

The invention aims to provide a polymer electrolytic material excellent in proton conductivity and also excellent in fuel shutting property, and accordingly provide a polymer electrolytic fuel cell with a high efficiency. That is, the invention provides a polymer electrolytic material having an unfreezable water ratio Rw1 defined by the following expression (S1) in a range of 20 to 100% by weight in hydrated state: Rw1=[Wnf / (Wfc+Wnf)]×100   (S1) in which Wnf represents the unfreezable water content per 1 g of the polymer electrolytic material in dry state and Wfc represents the low freezing point water content per 1 g of the polymer electrolytic material in dry state.
Owner:TORAY IND INC

Composite polymeric electrolyte membrane, preparation method thereof

Disclosed is a composite electrolyte membrane for fuel cells, comprising, based on weight of the membrane, a matrix blend resin that consists of 10-70 wt % of an ion exchange resin having a cation exchanging group on the side chain thereof, 10-70% wt of a non-conductive polymer and 10-70 wt % of a thermo-curable oligomer, and 10-60 wt % of a proton conductive material. In the matrix blend resin, the thermo-curable oligomer is cross-linked with chains of the non-conductive polymer and the ion exchange resin by heat, thus forming network structure, in which the proton conductive material of fine powder forms is uniformly dispersed. The above membrane is excellent in proton conductivity, mechanical properties, dimensional stability, and separability between gaseous or liquid fuel and gaseous oxidant. In particular, the membrance has excellent ion conductivity at high temperatures of 100° C. or more because of a moisturizing function of the proton conductive material.
Owner:SONG MIN KYU

Multi-layer moisture making compound film for proton exchange film fuel cell and its making method

The invention relates to a multiple-layer complex proton exchange film for the fuel battery in particular to a multiple-layer self-humidifying complex film and preparing method for the proton exchange film fuel battery. The complex film comprises the following parts: a porous strengthening film and a self-humidifying complex layer, wherein the proton exchange film resin is poured and painted on the porous strengthening film and the strengthening complex film is formed, the self-humidifying complex layer is poured and painted at two sides of the strengthening complex film, the self-humidifying complex layer is comprised by the metal accelerant and the proton exchange film resin(the mass ratio of the accelerant(pt) and the proton exchange film resin is 0.0005:1-0.01:1), the proton exchange film resin can be perfluorine sulfonic acid resin, sulfonated polyarylethersulfone, sulfonated polyetheretherketone, partial sulfonated polystyrene fluoride, partial sulfonated polyarylethersulfone fluoride, or partial polyaryletheretherketone fluoride. The multiple-layer self-humidifying complex film is provided with the good steady, the high proton conductivity and the good self-humidifying property.
Owner:DALIAN INST OF CHEM PHYSICS CHINESE ACAD OF SCI

Use of porous membrane and composite membrane thereof in redox flow energy storage battery

Disclosed is use of a porous membrane and a composite membrane thereof in a redox flow batteries, and in particular the use thereof in a vanadium redox flow battery. The membrane can effectively realize the separation of ions with different valence states, and an ion transfer without any ion exchange group. The pore size and structure of the porous membrane can be controlled by filling an inorganic substance or grafting an ion exchange group in the pore, in order to improve the barrier properties of the porous membrane for vanadium ions and to increase proton conductivity.
Owner:DALIAN INST OF CHEM PHYSICS CHINESE ACAD OF SCI +1

Sulfonic acid group-containing, proton-conducting polymer composition, a solid electrolyte membrane and a solid polymer fuel cell

A solid electrolyte membrane for solid polymer fuel cells, or the like is provided that is chemically stable in a strong acid atmosphere, and has low methanol cross-over as well as high proton conductivity. The solid electrolyte membrane is manufactured, using an electrolyte composition comprising a sulfonic acid group-containing polymer having a specific triazine structure. This polymer can be synthesized, for example, from a sulfonic acid group-containing dihydroxy compound having a triazine structure, and a difluoride.
Owner:FUJITSU LTD

Enhancement type composite proton exchanging film based on semi-interpenetrating network

The invention belongs to the technical field of functional high molecular materials and electrochemical electrochemistrytechniques, in particular to an enhanced compound proton exchange membrane based on the semi-interpenetrating net, and a preparation method thereof. The method comprises synthesizing the linear polybenzimidazole polymer containing crosslinkable groups, blending the linear polybenzimidazole polymer and perflurinated sulfonic acid resin, using the specific method to crosslink polybenzimidazole polymer during membrane forming process, and forming the compound membrane with the semi-interpenetrating net structure. , thus The the compound membrane is attached withhas good mechanical property and high proton conductivity. The method disclosed by the invention is characterized in by good preparation controllability. Compared with the traditional perflurinated sulfonic acid membrane, the enhanced compound proton exchange membrane based on the semi-interpenetrating net is characterized in by high mechanical strength and good size stability, and has a wide application future in polymer electrolyte membrane fuel cells.
Owner:TONGJI UNIV

Fuel cell with electrode having an electrically conductive nano-column and production method thereof

In a fuel cell including an electrolyte membrane and a pair of electrodes disposed on both sides of the electrolyte membrane, at least one of the electrodes has an electrically conductive nanocolumn that is oriented with an inclination of 60° or less with respect to a planar direction of the electrolyte membrane, a catalyst supported on the electrically conductive nanocolumn, and an electrolyte resin coating the electrically conductive nanocolumn.
Owner:TOYOTA JIDOSHA KK +1

Organic composite high-temperature proton exchange membrane and preparation method thereof

The invention relates to an organic composite high-temperature proton exchange membrane and a preparation method of the membrane. Particularly, the organic composite high-temperature proton exchange membrane is formed by compositing a polybenzimidazole compound A and a strong-base polymer B as raw materials at a mole ratio of 1:(0.01-99.99). The invention further provides the preparation method of the high-temperature proton exchange membrane. The high-temperature proton exchange membrane has high proton conductivity and high mechanical strength and is very suitable for a proton exchange membrane fuel cell.
Owner:SHANGHAI INST OF ORGANIC CHEMISTRY - CHINESE ACAD OF SCI

Electrolyte membrane and application of composite membrane thereof in liquid-flow energy storage battery with acidic electrolyte

The invention relates to an electrolyte membrane and application of a composite membrane thereof in a liquid-flow energy storage battery with acidic electrolyte. The electrolyte membrane uses polybenzimidazole or other aromatic heterocyclic polymers as a base membrane or is doped with a strong-acidity solution through composite techniques comprising an organic / inorganic technique, an organic / organic technique, a blending technique, a crosslinking technique, a strengthening technique and the like so that the acid content, the proton conductivity and the mechanical strength of the composite membrane are improved. Different from the traditional electrolyte membrane containing functional groups, the novel electrolyte membrane does not contain iron conduction groups, but utilizes acid in the electrolyte as the electrolyte to conduct protons. Due to the adoption of a Hopping conduction mechanism, the membrane reduces the iron permeation and the water migration of the liquid-flow energy storage battery, greatly reduces the crossing of anode and cathode electrolyte and prolongs the service life of the electrolyte. The preparation process is simple, and the prepared electrolyte membrane can effectively satisfy the requirements on the performance and the stability of the liquid-flow energy storage battery.
Owner:DALIAN RONGKE POWER

Polymer electrolyte membrane for a fuel cell, and method for preparing same

The present disclosure relates to a polymer electrolyte membrane having a construction wherein an ionomer is charged in pores of a nanoweb having a high melting point, being insoluble in an organic solvent and having excellent pore characteristics, under optimum conditions. Therefore, an overall thickness of the electrolyte membrane may be reduced, thereby attaining advantages such as decrease in ohmic loss, reduction of material costs, excellent heat resistance, low thickness expansion rate which in turn prevents proton conductivity from being deteriorated over a long term. The polymer electrolyte membrane of the present invention comprises a porous nanoweb having a melting point of 300□ or more and being insoluble in an organic solvent of NMP, DMF, DMA, or DMSO at room temperature; and an ionomer which is charged in pores of the porous nanoweb and contains a hydrocarbon material soluble in the organic solvent at room temperature.
Owner:KOLON IND INC

Beta-cyclodextrin modified mesoporous silica ball-polymer hybrid proton exchange membrane and preparation method thereof

The invention belongs to the technical field of membranes, and particularly relates to a beta-cyclodextrin modified mesoporous silica ball-polymer hybrid proton exchange membrane and a preparation method thereof. The method comprises the following steps: firstly preparing a beta-cyclodextrin modified mesoporous silica ball with a spherical shell structure; and blending the beta-cyclodextrin modified mesoporous silica ball with a polymer, so as to prepare the proton exchange membrane. According to the proton exchange membrane prepared by the method, organic-inorganic composite particles (beta-cyclodextrin modified mesoporous silica balls) are introduced, the colorless transparent character of the proton exchange membrane is not changed; the proton conductivity of the beta-cyclodextrin modified mesoporous silica ball-polymer hybrid proton exchange membrane is greatly increased in comparison with a pure polymer proton exchange membrane; especially the proton conductivity in high-temperature and / or low-humidity environments is improved exponentially or even by one order of magnitude; and meanwhile, the method disclosed by the invention is mild in preparation condition, low in production cost and easy in large-batch and large-scale production, and has a good industrial production foundation and wide application prospect.
Owner:FUDAN UNIV

Electrolyte membrane for fuel cell

InactiveUS20090117439A1Without losing mechanical property and shapeImprove proton conductivitySolid electrolytesFuel cells groupingFuel cellsConductive polymer
An electrolyte membrane for a fuel cell includes: a proton conductive material in which hollow inorganic fine particles having through-holes on the surface of the hollow inorganic fine particles, are filled with an electrolyte resin; and a non-proton conductive polymer.
Owner:NAT UNIV CORP SHIZUOKA UNIV +1

Preparation method for compound proton exchange membrane for high-temperature-resisting fuel cell

The invention relates to a proton exchange membrane, particularly relates to a preparation method for a compound proton exchange membrane for a high-temperature-resisting fuel cell, and belongs to the field of fuel cells. According to the preparation method, a precursor containing an imidazole ring is put into a polybenzimidazole solution to be directly subjected to a sol-gel method to be crossly linked into a membrane and the membrane is adsorbed with phosphoric acid to be prepared into a phosphoric acid doped proton exchange membrane. Compared with the prior art, the preparation method for the compound proton exchange membrane for the high-temperature-resisting fuel cell has the following advantages that the precursor containing the imidazole ring is put into the polybenzimidazole solution to be directly subjected to the sol-gel method to be crossly linked into the membrane; the preparation method is simple and controllable; an imidazole structure contained in a silicon nano particle can react with the phosphoric acid to generate an imidazolium salt; one part of the phosphoric acid is fixed and the generated imidazolium salt has a certain adsorption effect on the free phosphoric acid, so that the adsorption capability to the phosphoric acid by a PBI (Polybenzimidazole) compound membrane is improved greatly and the leakage and loss of the phosphoric acid are inhibited; therefore, the proton conductivity of the proton exchange membrane is improved.
Owner:如东文园投资开发有限公司

Electrolyte Membrane and Fuel Cell Employing Said Electrolyte Membrane

To provide an inexpensive electrolyte membrane that can be used in electrochemical device applications such as a solid polymer type fuel cell, has high proton conductivity, has excellent performance in preventing permeation of methanol when used in a DMFC, and has excellent durability when operated as a fuel cell.An electrolyte membrane comprising a crosslinked electrolyte polymer comprising as essential constituent monomers (a) a compound having a polymerizable carbon-carbon double bond and a sulfonic acid group in one molecule, or a salt thereof, and (b) a (meth)acrylamide derivative represented by a specific structural formula.
Owner:TOAGOSEI CO LTD

Advanced solid acid electrolyte composites

Solid acid / surface-hydrogen-containing secondary component electrolyte composites, methods of synthesizing such materials, electrochemical device incorporating such materials, and uses of such materials in fuel cells, membrane reactors and hydrogen separations are provided. The stable electrolyte composite material comprises a solid acid component capable of undergoing rotational disorder of oxyanion groups and capable of extended operation at a wide temperature range and a secondary compound with surface hydrogen atoms, which when intimately mixed, results in a composite material with improved conductivity, mechanical and thermal properties, when compared to pure solid acid compound.
Owner:CALIFORNIA INST OF TECH

Electrolyte membrane of siloxane-based polymer and solid polymer fuel cell utilizing the same

An electrolyte membrane made of a phosphate-containing siloxane-based polymer for fuel cell, where the polymer comprises a siloxane backbone and a poly(meth)acrylate chain to which phosphate groups are attached, and the polymer is formed by vinyl polymerization of a silane compound having a (meth)acrylate functional group or a hydrolysis-polycondensation product thereof and a (meth)acrylate compound having a phosphate group, followed by siloxane crosslinking. The electrolyte membrane of a siloxane-based polymer has a high conductivity for a fuel cell.
Owner:CANON KK

Polymer electrolyte composition for direct methanol fuel cell with suppressed methanol crossover

The present invention is directed to a polymer electrolyte composition for a direct methanol fuel cell which comprises a perfluorinated ionomer (A) and a crosslinked hydrocarbon-based ionomer (B). In some embodiments, the crosslinked hydrocarbon-based ionomer (B) can be obtained by crosslinking a mixture of a monomer containing ionic groups b1, a crosslinking agent b2, a monomer for controlling mechanical properties b3 and an initiator b4. The polymer electrolyte composition can minimize methanol crossover, exhibit improved proton conductivity and exhibit excellent mechanical properties.
Owner:KOREA ADVANCED INST OF SCI & TECH

Side-chain sulfonic acid type polyarylether, preparation method thereof and application of polyarylether in preparation of proton exchange membrane

The invention belongs to the technical field of high polymer materials and relates to a side-chain sulfonic acid type polyarylether polymer which has high thermal stability and is used in a proton exchange membrane of a fuel cell and a preparation method thereof. The preparation method comprises the following steps: adding a diphenol monomer, a sulfonated difluoro-monomer, a difluoro-monomer and anhydrous potassium carbonate in a three-necked bottle provided with a stirrer, a water-carrying device and a nitrogen hole, adding a solvent and an azeotropic dehydrant which accounts for 20% of the solvent by volume in the three-necked bottle, injecting nitrogen, and heating to reflux the azeotropic dehydrant; and refluxing for 2-5h to dehydrate, evaporating the azeotropic dehydrant, heating to 175-190 DEG C to react for 5-8h, then pouring the reaction mixture in water to obtain a polymer, grinding the polymer to fine particles by using a grinder, filtering by using a buchner funnel, washingwith deionized water and ethanol several times, and performing vacuum drying at 100-110 DEG C for 10-15h to obtain the side-chain sulfonic acid type polyarylether polymer with high thermal stability,good solubility and film-forming property and low water absorption rate.
Owner:JILIN UNIV

Composite electrolyte with crosslinking agents

InactiveUS6962959B2Sacrificing electrochemical performanceLow costSolid electrolytesIon-exchanger regenerationFuel cellsComposite electrolyte
A covalent crosslinking of ion-conducting materials via sulfonic acid groups can be applied to various low cost electrolyte membrane base materials for improved fuel cell performance metrics relative to such base material. This proposed approach is due, in part, to the observation that many aromatic and aliphatic polymer materials have significant potential as proton exchange membranes if a modification can increase their physical and chemical stabilities without sacrificing electrochemical performance or significantly increasing the material and production costs.
Owner:HOKU SCI

Preparation of novel covalent cross-linking polybenzimidazole proton exchange membrane

The invention relates to a preparation method of a covalent cross-linking polybenzimidazole high-temperature proton exchange membrane. The preparation method comprises the following steps: carrying out covalent cross-linking by taking polybenzimidazole resin as a raw material and taking bivariate or multivariate halides and epoxy compounds as cross-linking agents, and forming the membrane through a solvent volatilization method. The covalent cross-linking polybenzimidazole high-temperature proton exchange membrane prepared by utilizing the method disclosed by the invention has the advantages of better dimensional stability, thermodynamic stability and chemical stability, high phosphoric acid doping level and higher proton conducting property and can be used within a range of 20-200 DEG C. The preparation process disclosed by the invention is simple and low in raw material cost; and the prepared cross-linking proton exchange membrane has potential of being applied to a high-temperature fuel cell.
Owner:BEIJING UNIV OF CHEM TECH

Proton conducting membrane, method for producing the same and fuel cell using the same

A proton conducting membrane having a high ionic conductivity and an excellent high temperature dimensional stability which can perform stably even at high temperatures, a method for producing the same and a solid polymer-based fuel cell comprising same are provided. In other words, the present invention concerns a method for producing a proton conducting membrane having a crosslinked structure formed by a silicon-oxygen covalent bond and having a sulfonic acid-containing crosslinked structure represented by the following formula (1) therein, which comprises a first step of preparing a mixture containing a mercapto group-containing oligomer (A) having a plurality of mercapto groups and a reactive group which can form a Si—O—Si bond by condensation reaction, a second step of forming said mixture into a membrane, a third step of subjecting said membrane-like material to condensation reaction in the presence of a catalyst to obtain a crosslinked gel and a fourth step of oxidizing the mercapto group in the membrane so that it is converted to a sulfonic acid group, a proton conducting membrane obtained by same and a fuel cell comprising same:
Owner:SEKISUI CHEM CO LTD

Proton exchange membrane for medium-temperature fuel cell and preparation thereof

The invention relates to a proton exchange membrane of fuel cells which can be used at medium temperature, which is a proton exchange membrane doped with sulfonated phenyl zirconium phosphonic acid. The proton exchange membrane is characterized in that the membrane preparing materials consist of sulfonated high molecular material and sulfonated phenyl zirconium phosphonic acid salts, wherein, the degree of sulfonation of sulfonated high molecular material selects 20 percent to 85 percent and accounts for 60 percent to 95 percent of the weight percentage of the membrane preparing material; and the degree of sulfonation of sulfonated phenyl zirconium phosphonic acid salts selects 30 percent to 90 percent accounts for 5 percent to 40 percent of the weight percentage of the membrane preparing material. Porous supporting materials can also be added into the membrane so as to improve strength of the membrane and reduce the deformability. The membrane preparing materials fill pores with the porous supporting materials and form a layer of membrane at the outer surface of the porous supporting materials. The invention is applicable to medium-temperature alcohol fuel cells so as to improve operating temperature of the fuel cells and improve the performance of the fuel cells.
Owner:SHANDONG UNIV OF TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products