Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

30results about How to "Excessive diffusion" patented technology

Absorbent article and method of manufacturing the same

An absorbent article having a compressed region formed by a compressing process in an absorption layer on a side facing to the backsheet; and a plurality of pressed grooves are formed by a pressing process in the absorption layer on a side facing to the topsheet, within a region opposed to the compressed region.
Owner:UNI CHARM CORP

Laminated ceramic electronic component

ActiveUS20150279566A1Satisfactory bondabilityEnsure electrical stabilityFixed capacitor electrodesFixed capacitor dielectricElectrical connectionElectrode Contact
A laminated ceramic electronic component that includes a laminated body formed by laminating a ceramic layer and an internal electrode, and forming an external electrode on an outer surface of the laminated body so as to be electrically connected to the internal electrode. The external electrode includes a conducting layer that is in contact with the internal electrode, and the internal electrode contains Ni. The conducting layer contains metal particles containing a Cu3Sn alloy, and a thermosetting resin. The internal electrode and the conducting layer are bonded to each other with a CuSnNi alloy phase interposed therebetween.
Owner:MURATA MFG CO LTD

Microfluidic devices for rotational manipulation of the fluidic interface between multiple flow streams

Microfluidic devices and methods are provided for enhancing detection of a diffusion pattern formed by particles diffusing between at least two fluid streams in parallel laminar flow such that an interface is formed between them by increasing the dimension of the streams in the diffusion direction. This may be accomplished by flowing the streams through a transforming turn, or by flowing the streams through a channel having diverging walls. Devices and methods are also provided for enhancing diffusion between two streams comprising changing the interface between said streams from a narrow interface to a broad interface.
Owner:UNIV OF WASHINGTON

Dose, localization, and formulation of botulinum toxins in skin and muscle

Formulations of and dosing protocols for the administration of botulinum toxin that maximize efficacy and specificity while minimizing the likelihood of overdosing and undesirable side effects of treatment. The formulations include positively charged carriers, such as cationic peptides, which otherwise have no inherent botulinum-toxin-like activity. The dosing regimen is based on the pattern, quantity, and location of neuromuscular junctions in the target tissue. Because the number of neuromuscular junctions in a target tissue remains generally stable throughout life and because the pharmacological effect of botulinum toxin is localized at the neuromuscular junction, dosing efficacy is unaffected by muscle mass, age of the patient, or body weight.
Owner:DT SCIMED

Method of manufacturing semiconductor device and semiconductor device

A method of manufacturing a semiconductor device includes forming a barrier metal film including a high melting point metal in a concave portion formed in an insulating film formed over a substrate; forming a seed alloy film including copper and an impurity metal different from the copper over the barrier metal film so as to fill a portion of the concave portion; forming a plated metal film containing copper as a major ingredient over the seed alloy film so as to fill the concave portion; first heat-treating the seed alloy film and the plated metal film at 200° C. or higher and for ten minutes or less; removing the plated metal film, the seed alloy film, and the barrier metal film which are exposed to the outside of the concave portion, after the first heat-treating; and second heat-treating the seed alloy film and the plated metal film.
Owner:RENESAS ELECTRONICS CORP

Dopant introduction method and heat treatment method

A thin film containing a dopant is deposited on a surface of a semiconductor wafer. The semiconductor wafer on which the thin film containing the dopant is deposited is rapidly heated to a first peak temperature by irradiation with light from halogen lamps, so that the dopant is diffused from the thin film into the surface of the semiconductor wafer. The thermal diffusion using the rapid heating achieves the introduction of the necessary and sufficient dopant into the semiconductor wafer without producing defects. The surface of the semiconductor wafer is heated to a second peak temperature by further irradiating the semiconductor wafer with flashes of light from flash lamps, so that the dopant is activated. The flash irradiation which is extremely short in irradiation time achieves a high activation rate without excessive diffusion of the dopant.
Owner:DAINIPPON SCREEN MTG CO LTD

Method for fabricating mos-fet

A method for fabricating MOS-FET using a SOI substrate according to the present invention includes a process of ion implantation of an impurity into a channel region in a SOI layer; and a process of channel-annealing in a non-oxidized atmosphere. In the ion implantation process, a concentration peak of the impurity is made to exist in the SOI layer. Moreover in the channel-annealing process, the impurity is distributed with a high concentration in the vicinity of the surface of the SOI layer under the following condition with the anneal temperature as T (K) and annealing time as t (minutes):506×1000 / T−490<t<400×1000 / T−386
Owner:LAPIS SEMICON CO LTD

Semiconductor laser device and manufacturing method thereof

In a monolithic dual-laser semiconductor laser device capable of high power output, a window structure for each of laser elements is formed through a common step, thereby improving the device reliability. The semiconductor laser device has an infrared laser element li0 and a red laser element 120 monolithically integrated on an n-type semiconductor substrate i01. Each of the infrared and red laser elements 110 and 120 has a ridged waveguide and a window structure formed by Zn diffusion at each resonator facet. The infrared and red laser elements ii0 and 120 include p-type contact layers 109 and 119 on the ridges of the respective waveguides. The p-type contact layer 109 is thinner than the p-type contact layer 119.
Owner:PANASONIC CORP

Air diffuser and flushing method thereof

An air diffuser (2) having a diffuser tube (5) immersed sidewardly in a tank (1), a flushing pipe (9) opening at its tip an outlet (11) at an upper position of the diffuser tube, and a flushing valve (12) disposed in the flushing pipe (9). The diffuser tube (5) is made up of a main pipe (6) communicated at its basal end to an air supply source (8) and communicated at its tip to the flushing pipe (9), and a plurality of branch pipes (7) being communicated to the main pipe (6) and opening at their tip as a blowhole (10) at a lower position of the main pipe (6). During air diffusion, air is supplied from the air supply source (8) with tile flushing valve (12) closed, and the air is diffused from the blowholes (10). During flushing, air is supplied from the air supply source (8) with the flushing valve (12) opened and an intra-tank mixed liquor is sucked from the openings of the diffuser tube (5), thereby flushing the inside of the diffuser tube (5) with the sucked intra-tank mixed liquor. The intra-tank mixed liquor is then joined with air to come off together from the outlet (11) of the flushing pipe (9). Air diffusion from the blowholes (10) and the flushing of the diffuser tube (5) are alternately repeated by utilizing pulsation to be caused by pressure variations in the diffuser tube (5).
Owner:KUBOTA LTD

Actinic-ray- or radiation-sensitive resin composition and method of forming pattern using the composition

An actinic ray- or radiation-sensitive resin composition according to the present invention comprises a sulfonic acid-generating compound that is decomposed by an action of an acid to generate a sulfonic acid having a volume of 240 Å3 or more and a compound that generates the acid when exposed to actinic rays or radiation.
Owner:FUJIFILM CORP

Semiconductor laser device and manufacturing method thereof

In a monolithic dual-laser semiconductor laser device capable of high power output, a window structure for each of laser elements is formed through a common step, thereby improving the device reliability. The semiconductor laser device has an infrared laser element 110 and a red laser element 120 monolithically integrated on an n-type semiconductor substrate 101. Each of the infrared and red laser elements 110 and 120 has a ridged waveguide and a window structure formed by Zn diffusion at each resonator facet. The infrared and red laser elements 110 and 120 include p-type contact layers 109 and 119 on the ridges of the respective waveguides. The p-type contact layer 109 is thinner than the p-type contact layer 119.
Owner:PANASONIC CORP

Method for manufacturing semiconductor device and MOS field effect transistor

Upon manufacture of a semiconductor device provided with a source region and a drain region formed by activating, through anneal, an n-type first dopant ion-implanted in a p-type device forming area provided in a semiconductor layer formed on an insulator, and a body region, (a) ion implantation of Ar in a boundary region between the source and drain regions to be formed, which corresponds to a region lying in a predeterminate area for forming the body region, and (b) high-temperature anneal for partly recovering crystal defects produced by the ion implantation of the Ar at a temperature higher than the anneal for activation of the first dopant are carried out prior to the ion-implantation of the first dopant.
Owner:LAPIS SEMICON CO LTD

Battery cell and manufacturing method thereof

A battery cell includes an electrode assembly; a case comprising an accommodation portion accommodating the electrode assembly and a sealing portion formed on a periphery of the accommodation portion; and a fixing member disposed between the accommodation portion and the sealing portion to adhere each other; wherein the fixing member comprises a core layer, and an adhesive layer is stacked on both surfaces of the core layer.
Owner:SK ON CO LTD

Channels and lenses for linear lighting

Channels and channel covers for linear lighting are disclosed. The channels have an upper compartment for linear lighting and a lower compartment that may be used as a raceway, to engage parts, and for rear entry of wires. Endcaps for the channels may engage the lower compartment. Cover-lenses for linear lighting channels are also disclosed. The cover-lenses may include diffusing material and implement a thickness gradient in order to maximize the amount of diffusing material where the emitted light intensity is expected to be greatest. Diverging Fresnel features may be superimposed on the thickness gradient in order to counteract any converging effect of the thickness gradient and cause emitted light to spread more evenly.
Owner:ELEMENTAL LED

Purge device and method of diffusing gas including purge gas

A purge device includes an internal space defined by a chassis, and performs a purge process where an inside of a storage container F arranged in the internal space with an article being accommodated is purged with a purge gas. The purge device includes an air blower that is located outside the chassis, and sends air to an area where a gas including the purge gas in the internal space leaks through an opening in the chassis so as to diffuse the gas including the purge gas leaking from the opening.
Owner:MURATA MASCH LTD

Tea Bag Tube

InactiveUS20200156862A1Excessive diffusionEasily be pulled out of the drinking bottle and not leave a messPackaging foodstuffsProcess engineeringFilter paper
The commonly used tea bags, such as the square and pyramid designs made from filter paper, offer ease of brewing a drink by steeping the tea bag into a liquid, most notably water. However, these tea bags are not feasible for smaller drinking bottles. In addition, commonly used tea bags have to be steeped for long periods of time, making it not ideal in hurried situations. The shape and size of the tea bag tube make it ideal to fit inside any sized drinking container, such as smaller water bottles. Due to the tea bag tube's disposable nature, as being a filter bag, this invention can easily be pulled out of the drinking bottle and not leave a mess, allowing for an on-the-go format and reuse of smaller water bottles.
Owner:SPEAR MARCIA

Trench-type semiconductor device structure

A trench-type semiconductor device structure is disclosed. The structure includes a semiconductor substrate, a gate dielectric layer and a substrate channel structure. The semiconductor substrate includes a trench having an upper portion and a lower portion. The upper portion includes a conductive layer formed therein. The lower portion includes a trench capacitor formed therein. The gate dielectric layer is located between the semiconductor substrate and the conductive layer. The substrate channel structure with openings, adjacent to the trench, is electrically connected to the semiconductor substrate via the openings.
Owner:NAN YA TECH

Thin film photoelectric conversion device and method for manufacturing thin film photoelectric conversion device

A thin film photoelectric conversion device for performing photoelectric conversion of a wide range of light, from the visible range to the infrared range, is provided. A plasmon resonance phenomenon, which enhances a photo-induced electric field, is caused in a wide range of light, by a metal nanostructure which is formed by annealing a substrate on which a first metal thin film layer composed of a first metal and a second metal thin film layer composed of a second metal which is partially overlapped onto the first metal thin film layer are laminated, and in which a periodic structure, wherein a number of first convex parts successively lie with a pitch of from one-tenth of a wavelength of an incident light to a wavelength equal to or shorter than the wavelength of the incident light in a planar direction along the substrate, is formed on the surface of the substrate; and a random structure, wherein a distance between any pair of a number of second convex parts formed at random positions on the substrate, or a distance between a second convex part and a first convex part is shorter than 100 nm, is formed on the substrate in a position within a region of the periodic structure or in a position adjacent to the region of the periodic structure, and as a result, high sensitivity photo-induced current is generated.
Owner:NUSOLA

Method for manufacturing semiconductor device and MOS field effect transistor

Upon manufacture of a semiconductor device provided with a source region and a drain region formed by activating, through anneal, an n-type first dopant ion-implanted in a p-type device forming area provided in a semiconductor layer formed on an insulator, and a body region, (a) ion implantation of Ar in a boundary region between the source and drain regions to be formed, which corresponds to a region lying in a predeterminate area for forming the body region, and (b) high-temperature anneal for partly recovering crystal defects produced by the ion implantation of the Ar at a temperature higher than the anneal for activation of the first dopant are carried out prior to the ion-implantation of the first dopant.

Electrochemical reaction unit cell, and electrochemical reaction cell stack

An electrochemical reaction unit cell including an electrolyte layer containing Zr, an anode disposed on one side of the electrolyte layer in a first direction, a cathode containing Sr and disposed on another side of the electrolyte layer in the first direction, and a reaction preventing layer disposed between the electrolyte layer and the cathode. The reaction preventing layer contains Zr in an amount of 0.015 wt % to 1 wt %.
Owner:MORIMURA SOFC TECH CO LTD

Annealing system and annealing method integrated with laser and microwave

Disclosed is an annealing system integrated with laser and microwave. The annealing system is provided with a microwave system, a laser system, and a measurement and control system. The microwave system provides a microwave energy to a first area of a to-be-annealed object for annealing the first area of the to-be-annealed object. The laser system uses a laser to provide a laser energy to a second area of the to-be-annealed object for annealing the second area of the to-be-annealed object. The measurement and control system monitors and controls a power of a microwave and / or a laser. The annealing system is capable of reducing a time required for an overall annealing, and also capable of avoiding cracks or defects caused by large stress differences.
Owner:HIGHLIGHT TECH +1

Trench-type semiconductor device structure

A trench-type semiconductor device structure is disclosed. The structure includes a semiconductor substrate, a gate dielectric layer and a substrate channel structure. The semiconductor substrate includes a trench having an upper portion and a lower portion. The upper portion includes a conductive layer formed therein. The lower portion includes a trench capacitor formed therein. The gate dielectric layer is located between the semiconductor substrate and the conductive layer. The substrate channel structure with openings, adjacent to the trench, is electrically connected to the semiconductor substrate via the openings.
Owner:NAN YA TECH

Thin film photoelectric conversion device and method for manufacturing thin film photoelectric conversion device

A thin film photoelectric conversion device for performing photoelectric conversion of a wide range of light, from the visible range to the infrared range, is provided. A plasmon resonance phenomenon, which enhances a photo-induced electric field, is caused in a wide range of light, by a metal nanostructure which is formed by annealing a substrate on which a first metal thin film layer composed of a first metal and a second metal thin film layer composed of a second metal which is partially overlapped onto the first metal thin film layer are laminated, and in which a periodic structure, wherein a number of first convex parts successively lie with a pitch of from one-tenth of a wavelength of an incident light to a wavelength equal to or shorter than the wavelength of the incident light in a planar direction along the substrate, is formed on the surface of the substrate; and a random structure, wherein a distance between any pair of a number of second convex parts formed at random positions on the substrate, or a distance between a second convex part and a first convex part is shorter than 100 nm, is formed on the substrate in a position within a region of the periodic structure or in a position adjacent to the region of the periodic structure, and as a result, high sensitivity photo-induced current is generated.
Owner:NUSOLA

Method of fabricating complementary metal-oxide-semiconductor transistor and metal-oxide-semiconductor transistor

A method of fabricating a metal-oxide-semiconductor transistor is provided. A first gate structure and a second gate structure are formed on a substrate. The first gate structure has a dimension greater than the second gate structure. Then, first lightly doped drain regions are formed in the substrate on two sides of the first gate structure. A lightly doped drain annealing process is performed. Next, second lightly doped drain regions are formed in the substrate on two sides of the second gate structure. First spacers are formed on the sidewalls of the first gate structure and second spacers are formed on the sidewalls of the second gate structure at the same time. Afterwards, first source / drain regions are formed in the substrate on two sides of the first spacers and second source / drain regions are formed in the substrate on two sides of the second spacers. A source / drain annealing process is performed.
Owner:UNITED MICROELECTRONICS CORP

Metal particle

A metal particle for joint material includes an intermetallic compound crystal that contains Sn, Cu, Ni and Ge, in a basal phase that contains Sn and an Sn—Cu alloy, the metal particle having a chemical composition represented by 0.7 to 15% by mass of Cu, 0.1 to 5% by mass of Ni, 0.001 to 0.1% by mass of Ge and the balance of Sn, the basal phase having a chemical composition represented by 95 to 99.9% by mass of Sn, 5% by mass or less of Cu and 0.1% by mass or less of an inevitable impurity, the intermetallic compound crystal residing in the basal phase so as to be included therein, the metal particle having a particle size of 1 μm to 50 μm, the metal particle containing an orthorhombic crystal structure, and at least parts of the basal phase and the intermetallic compound crystal forming an endotaxial joint.
Owner:NAPRA
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products