Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

3297results about How to "Easy to peel" patented technology

Semiconductor device and manufacturing method thereof

It is an object of the present invention to provide a peeling method that causes no damage to a layer to be peeled and to allow not only a layer to be peeled with a small surface area but also a layer to be peeled with a large surface area to be peeled entirely. Further, it is also an object of the present invention to bond a layer to be peeled to various base materials to provide a lighter semiconductor device and a manufacturing method thereof. Particularly, it is an object to bond various elements typified by a TFT, (a thin film diode, a photoelectric conversion element comprising a PIN junction of silicon, or a silicon resistance element) to a flexible film to provide a lighter semiconductor device and a manufacturing method thereof.When a metal layer 11 is provided over a substrate, an oxide layer 12 is provided in contact with the metal layer 11, a layer to be peeled 13 is formed, and the metal layer 11 is irradiated with a laser beam to perform oxidization and form a metal oxide layer 16, a clear separation is possible with a physical means within the metal oxide layer 12 or at an interface between the metal oxide layer 16 and the oxide layer 12.
Owner:SEMICON ENERGY LAB CO LTD

Composite structural panel with thermoplastic foam core and natural fibers, and method and apparatus for producing the same

A composite structural panel includes a cover sheet laminated onto a three-layered substrate including a thermoplastic foam core sandwiched between two composite outer layers. Each composite outer layer includes natural fibers embedded in a thermoplastic matrix. The thermoplastic material of all layers is preferably polypropylene, and the core consists of an expanded cellular polypropylene rigid foam. In a method for forming the composite structural panel, a first preheated outer layer is laminated and molded onto the foam core in a first molding step, and then the second preheated outer layer and the cover sheet are laminated and molded onto the foam core in a second molding step, with a cooling-down time allowed between the two molding steps. In this manner, each preheated outer layer provides enough heat to thermally fuse the outer layer onto the foam core, without overheating the foam core to the point of softening or melting the foam core. The low density foam core provides a spacing distance between the strong composite outer layers, and therefore the finished composite structural panel has a high strength and rigidity, and a high strength-to-weight ratio. The structural panel can be molded into any desired three-dimensional contoured configuration during the molding process.
Owner:HERBERT OLBRICH

Electronic system modules and method of fabrication

This specification describes techniques for manufacturing an electronic system module. The module includes flexible multi-layer interconnection circuits with trace widths of 5 microns or less. A glass panel manufacturing facility, similar to those employed for making liquid crystal display, LCD, panels is used to fabricate the interconnection circuits. A polymer base layer is formed on a glass carrier with an intermediate release layer. Alternate layers of metal and dielectric are formed on the base layer, and patterned to create an array of multi-layer interconnection circuits on the glass panel. A thick layer of polymer is deposited on the interconnection circuit, and openings formed at input / output (I / O) pad locations. Solder paste is deposited in the openings to form wells filled with solder. After dicing the glass carrier to form separated interconnection circuits, IC chips are stud bumped and assembled using flip chip bonding, wherein the stud bumps on the components are inserted into corresponding wells on the interconnection circuits. The IC chips are tested and reworked to form tested circuit assemblies. Methods for connecting to testers and to other modules and electronic systems are described. Module packaging layers are provided for hermetic sealing and for electromagnetic shielding. A blade server embodiment is also described.
Owner:SK HYNIX INC

Prepreg, intermediate material for forming frp, and method for production thereof and method for production of fiber-reinforced composite material

An FRP is produced using a prepreg comprising reinforcing fiber, a sheet-like reinforcing fiber substrate containing reinforcing fiber, and a matrix resin, wherein the matrix resin is impregnated into the sheet-like reinforcing fiber substrate and also covers one surface of the sheet-like reinforcing fiber substrate, and the matrix resin impregnation ratio is within a range of 35% to 95%; a prepreg comprising reinforcing fiber, a sheet-like reinforcing fiber substrate containing reinforcing fiber, and a matrix resin, wherein the matrix resin exists on both surfaces of the sheet-like reinforcing fiber substrate, and the portion inside the sheet-like reinforcing fiber substrate into which the matrix resin has not been impregnated is continuous; or a prepreg comprising reinforcing fiber, a sheet-like reinforcing fiber substrate containing reinforcing fiber, and a matrix resin, wherein at least one surface exhibits a sea-and-island-type pattern comprising resin-impregnated portions (island portions) where the matrix resin is present at the surface and fiber portions (sea portions) where the matrix resin is not present at the surface, the surface coverage ratio of the matrix resin on those surfaces with said a sea-and-island-type pattern is within a range of 3% to 80%, and the weave intersection coverage ratio for the island portions, represented by a formula (1) shown below, is at least 40%, displays excellent external appearance, with no internal voids or surface pinholes, even when molded is conducted using only vacuum pressure.
Island portions weave intersection coverage ratio (%)=(T/Y)×100   (1)
(wherein, T represents a number of island portions that cover weave intersections, and Y represents a number of weave intersections within said reinforcing fiber woven fabric on said surface with said sea-and-island-type pattern).
Owner:MITSUBISHI RAYON CO LTD

Latex composition comprising a cross-linking agent and molded product thereof

A carboxyl group-containing diene-based rubber latex composition comprising (a) a carboxyl group-containing diene-based rubber latex and one or more compounds selected from the following (b) to (e):(b) an organometallic crosslinking agent containing two or more hydroxyl groups each bonded to a metal atom;(c) a cationic property-deactivated, modified polyamine-based resin, a cationic property-deactivated polyamide-epichlorohydrin resin, a cationic property-deactivated polyamine-epichlorohydrin resin, a cationic property-deactivated amine group- or quaternary ammonium base-containing polyvinyl alcohol, a cationic property-deactivated amine group- or quaternary ammonium base-containing polyacrylamide, a cationic property-deactivated amine group- or quaternary ammonium base-containing carbohydrate, or a polyacrylamide, polyvinyl alcohol, or carbohydrate into which a crosslinkable functional group is introduced;(d) an anionic or nonionic polyvinyl alcohol, anionic or nonionic polyacrylamide, or anionic or nonionic carbohydrate to which a water resistant additive is added; and(e) a cationizing agent.
Owner:YUGENKAISHA FOUR ROAD RES

Layered body and method for manufacturing thin substrate using the layered body

Provided is a layered body comprising a substrate to be ground and a support, where the substrate may be ground to a very small (thin) thickness and can then be separated from the support without damaging the substrate. One embodiment is a layered body comprising a substrate to be ground, a joining layer including a curable adhesive in contact with the substrate to be ground, a photothermal conversion layer comprising a light absorbing agent and a heat decomposable resin, and a light transmitting support. After grinding the substrate surface which is opposite that in contact with the joining layer, the layered body is irradiated through the light transmitting layer and the photothermal conversion layer decomposes to separate the substrate and the light transmitting support.
Owner:3M INNOVATIVE PROPERTIES CO
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products