Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

557results about "Cosmonautic thermal protection" patented technology

Polymeric coating for protecting objects

A protective polymeric coating is applied to the surface of various objects which are to be exposed to a harsh environment. The protective polymeric coating covers the exposed surface, where the polymeric coating includes a polyimide polymer. The polyimide polymer in the polymeric coating has a backbone with at least one non-terminal phenyl group. A linkage is connected to the non-terminal phenyl group, where the linkage can be an amide linkage or an ester linkage. An oligomeric silsesquioxane compound is connected to the linkage through an organic substituent, where the oligomeric silsesquioxane is not incorporated into the polymer backbone. The polymeric coating provides protection to the underlying object.
Owner:NEXOLVE HLDG CO LLC

Polymeric coating for protecting objects

A protective polymeric coating is applied to the surface of various objects which are to be exposed to a harsh environment. The protective polymeric coating covers the exposed surface, where the polymeric coating includes a polyimide polymer. The polyimide polymer in the polymeric coating has a backbone with at least one non-terminal phenyl group. A linkage is connected to the non-terminal phenyl group, where the linkage can be an amide linkage or an ester linkage. An oligomeric silsesquioxane compound is connected to the linkage through an organic substituent, where the oligomeric silsesquioxane is not incorporated into the polymer backbone. The polymeric coating provides protection to the underlying object.
Owner:NEXOLVE HLDG CO LLC

Deployable heat shield and deceleration structure for spacecraft

An apparatus for heat shielding and deceleration of a spacecraft comprises an unfoldable shield of individual panels made of a high temperature resistant fiber reinforced ceramic and pivotally mounted on the outer structure of the spacecraft. An unfolding ring slides axially along the body of the spacecraft. The panels are pivotally connected to the unfolding ring by compression struts acting as toggle levers. Tension springs pull the unfolding ring axially along the spacecraft body to toggle out the compression struts so as to outwardly pivotally deploy the panels. The unfoldable shield can be arranged on the forward end or the rear end of the spacecraft relative to its flight direction upon entry into the atmosphere.
Owner:AIRBUS DEFENCE & SPACE

Tile gap seal assembly and method

A seal assembly is configured to seal a tile gap between a pair of tiles. Each of the tiles may include a tile side surface. At least one of the tiles may include a groove which may be formed along a length of the tile side surface. The seal assembly may comprise a gasket assembly including first and second bulb portions which may be interconnected by a web. A spacer rope may be positionable along the web. The gasket assembly may define a folded configuration for mounting within the tile gap when the web is wrapped around the spacer rope such that the second bulb portion is positioned between the spacer rope and the first bulb portion. The second bulb portion may be receivable within the groove.
Owner:THE BOEING CO

High temperature seal for large structural movements

A high temperature sealing system is operative to seal an interface between adjacent hot structures and to minimize parasitic flow between such structures that move relative to one another in-plane or out-of-plane. The sealing system may be used to seal thrust-directing ramp structures of a reusable launch vehicle and includes a channel and a plurality of movable segmented sealing elements. Adjacent ramp structures include edge walls which extend within the channel. The sealing elements are positioned along the sides of the channel and are biased to engage with the inner surfaces of the ramp structures. The segmented sealing elements are movable to correspond to the contour of the thrust-directing ramp structures. The sealing system is operative to prevent high temperature thrust gases that flow along the ramp structures from infiltrating into the interior of the vehicle.
Owner:NAT AERONAUTICS & SPACE ADMINISTATION UNITED STATES OF AMERICA THE AS REPRESENTED BY THE SEC

Thermal insulating coating for spacecrafts

To protect spacecraft and their contents from excessive heat thermal protection systems are essential. For such thermal protection, metal coatings, ceramic materials, ablative materials, and various matrix materials have all been tried, but none have been found entirely satisfactory. The basis for this thermal protection system is the fact that the heat required to melt a substance is 80 to 100 times larger than the heat required to raise its temperature one degree. This led to the use herein of solid-liquid phase change materials. Unlike conventional heat storage materials, when phase change materials reach the temperature at which they change phase they absorb large amounts of heat without getting hotter. By this invention, then, a coating composition is provided for application to substrates subjected to temperatures above 100° F. The coating composition includes a phase change material.
Owner:NASA

Spacecraft heat dissipation system

A spacecraft is provided. The spacecraft comprises a plurality of heat generating electrical components. A first thermal radiator panel and a second thermal radiator panel are provided on the spacecraft, each panel being thermally coupled to the heat generating electrical components. Heat pipes are also provided. At least one first heat pipe is externally attached to the first thermal radiator panel and at least one second heat pipe is externally attached to the second thermal radiator panel. The at least one first heat pipe is thermally coupled to the at least one second heat pipe.
Owner:LOCKHEED MARTIN CORP

Ablation-resistant lightweight heatproof integrated composite material with thermal insulation function and preparation method thereof

Provided is an ablation-resistant lightweight integrated composite material with a thermal insulation function. The composite material is of a sandwich structure, the middle layer adopts a chopped fiber as a reinforcing body, phenolic resin as a substrate and hollow microbeads as thermal insulation fillers, upper and lower surface layers are bonded to each other by a fiber cloth pre-impregnation material, and the three layers are cured to improve the bearing capacity and the anti-scouring capacity. The preparation method of the composite material comprises eight steps including ceramic powdertreatment, pretreatment of the chopped fiber and a fiber cloth, mixing, drying, slurry preparation, brushing or impregnation, mold filling, curing formation and demolding. The composite material can be applied to the ablation working condition of medium and low heat flux density; the composite material is formed at one time, so that the preparation cycle is short, and the cost is low; a stable ablation-resistant ceramic layer can be formed on the surface in a temperature range from 800 DEG C to 1,300 DEG C, and meanwhile, low-density fillers such as the hollow microspheres achieve a thermal insulation function. In this way, the integrated thermal insulation function under the conditions of medium and low heat flux density and oxidation is achieved.
Owner:NAT UNIV OF DEFENSE TECH

Thermal protection system especially for space vehicles

A thermal protection system suitable as a heat shield for a space vehicle includes a flexible insulation mat that is adhesively bonded onto the outer skin of the space vehicle, a cover layer made of at least one ply of a ceramic fiber composite material secured onto the insulation mat, and a coating of an inorganic material applied onto an outer surface of the ceramic cover layer. The cover layer is secured to the insulation mat by adhesive bonding, stitching with ceramic threads or the like, or by a snap fastener button connection. The ceramic fiber composite materials of the cover layer include inorganic fibers which are preferably oxides, carbides or mixtures thereof embedded in a matrix of the same compositional components, whereby the components can be selected appropriately depending on the requirements of the particular application. The overall thermal protection system remains flexible, lightweight, and highly effective for thermal shielding, so that it may be used not only on the relatively cooler portions of the space vehicle, but also on the most highly thermally loaded areas such as the nose and the leading edges of wings and the like.
Owner:AIRBUS DEFENCE & SPACE

System for Emergency Crew Return and Down-Mass from Orbit

A system for emergency crew return and down-mass orbit comprising a stowable, self-contained, deployable maneuvering reentry vehicle for automated, on-demand reentry to ground for cargo of 1-10 kilograms or up to single or multiple human use for evacuation of orbital facilities. The system includes a deployable “aeroshell” that is contiguous (a single geometric object—surface or hollow shape—that can morph in 3D shape), modular (a collection of modular components externally acting as a contiguous shape, but morphed in 3D via actuators contained in each modular member to create a general asymmetric geometry), or discontiguous (a collection of independently controlled surfaces or bodies that morph to form desirable asymmetric drag configurations). The system contains traditional spacecraft guidance, navigation and control, propulsion, and attitude control elements, in addition to communications, power, and actuator energetics systems for controlling the vehicle aeroshell shape during reentry, thus, minimizing the landing footprint of the vehicle.
Owner:STONE WILLIAM C

Ultra-high speed aircraft thermal protection and drag reduction method and system

The invention provides an ultra-high speed aircraft thermal protection and drag reduction method and system. The method includes that a cold source is arranged inside the cavity of an ultra-high speed aircraft, a plurality of micropores are arranged in the wall surface of the cavity, and the cold source is ejected out of the micropores in a high-pressure air state under the action of driving force to form an air film on the outer surface of the cavity. The air film can perform thermal protection on the ultra-high speed aircraft, viscous drag of the aircraft with external air can be effectively reduced, thermal barrier is favorably alleviated or eliminated, security of the ultra-high speed aircraft is improved, service life is prolonged, and a good application prospect is achieved. A cold source driving unit comprising an air pump, a cold source storer and a buffer is adopted in the system, the air pump supplies compressed air to the cold source storer during the operation state, the cold source enters the buffer to be vaporized under the action of air pressure, and the air is ejected from the micropores to form the air film under the action of pressure.
Owner:NINGBO INST OF MATERIALS TECH & ENG CHINESE ACADEMY OF SCI +1

Method for preparing heat insulation tile of shuttle

The invention relates to a method for preparing heat insulation tiles of a shuttle, which is mainly used in heat insulation of shuttles and aircraft heat insulation protecting field such as other aerospace, aviation, guided missile and the like, belonging to the special technical field. The method comprises the steps of matrix batching, shaping, sintering and implementing coating, and the matrix batching is prepared from the following components by weight percent: 50-95% of fused quartz glass fiber, 5-50% of alumina fiber, 0-5% of boron nitride and 0-3% of matrix assistant. The heat insulation tile in the invention has the advantages of high-temperature resistance, high strength, low density, low heat conduction and fine heat insulation effect.
Owner:ZHONGCAI HIGH NEW MATERIAL +1

Folding retractable protective dome for space vehicle equipment

A folding, retractable dome for protecting a feature, such as a docking mechanism, a hatch or other equipment at an exterior surface of a space vehicle, includes a plurality of arcuate ribs, each having opposite ends respectively pinioned at opposite sides of the feature at the surface of the vehicle for rotational movement about an axis of rotation extending through the opposite ends and through an arcuate path of revolution extending over the feature, and a flexible cover attached to each of the ribs such that, in a deployed configuration of the dome, in which adjacent ribs are rotated apart from each other at a maximum relative angle therebetween, the cover is stretched generally tangentially between the adjacent ribs to form a generally arcuate shield over the feature, and in a retracted position of the dome, in which adjacent ribs are rotated together at a minimum relative angle therebetween, the cover is collapsed to define folded pleats between the adjacent ribs.
Owner:THE BOEING CO

Spacecraft battery thermal management system

A spacecraft battery thermal management system is provided that includes a battery, a first radiator panel and a second radiator panel. A first face of the first radiator panel is arranged to face a first direction and a first face of the second radiator panel is arranged to face a second direction opposite the first direction. A first heat pipe thermally couples the battery and the first radiator panel and is configured to control the transfer of heat between the battery and the first radiator panel. A second heat pipe thermally couples the battery and the second radiator panel and is configured to control the transfer of heat between the battery and the second radiator panel. Solar cells are optionally arranged on the faces of the first and / or second radiator panels.
Owner:LOCKHEED MARTIN CORP

Ceramic material suitable for repair of a space vehicle component in a microgravity and vacuum environment, method of making same, and method of repairing a space vehicle component

A precursor of a ceramic adhesive suitable for use in a vacuum, thermal, and microgravity environment. The precursor of the ceramic adhesive includes a silicon-based, preceramic polymer and at least one ceramic powder selected from the group consisting of aluminum oxide, aluminum nitride, boron carbide, boron oxide, boron nitride, hafnium boride, hafnium carbide, hafnium oxide, lithium aluminate, molybdenum silicide, niobium carbide, niobium nitride, silicon boride, silicon carbide, silicon oxide, silicon nitride, tin oxide, tantalum boride, tantalum carbide, tantalum oxide, tantalum nitride, titanium boride, titanium carbide, titanium oxide, titanium nitride, yttrium oxide, zirconium, diboride, zirconium carbide, zirconium oxide, and zirconium silicate. Methods of forming the ceramic adhesive and of repairing a substrate in a vacuum and microgravity environment are also disclosed, as is a substrate repaired with the ceramic adhesive.
Owner:COI CERAMICS

High efficiency tantalum-based ceramic composite structures

Tantalum-based ceramics are suitable for use in thermal protection systems. These composite structures have high efficiency surfaces (low catalytic efficiency and high emittance), thereby reducing heat flux to a spacecraft during planetary re-entry. These ceramics contain tantalum disilicide, molybdenum disilicide and borosilicate glass. The components are milled, along with a processing aid, then applied to a surface of a porous substrate, such as a fibrous silica or carbon substrate. Following application, the coating is then sintered on the substrate. The composite structure is substantially impervious to hot gas penetration and capable of surviving high heat fluxes at temperatures approaching 3000° F. and above.
Owner:NASA

High heat-resistant member, method for producing the same, graphite crucible and method for producing single crystal ingot

A high heat-resistant member includes a graphite substrate including isotropic graphite and a carbide coating film including a carbide, such as tantalum carbide, and covering a surface of the graphite substrate, the carbide coating film having a randomly oriented isotropic grain structure in which crystallites having a size indexed by a full width at half maximum of a diffraction peak of an X-ray diffraction spectrum of not more than 0.2° from (111) planes are accumulated at substantially random. The orientation of the carbide coating film is determined by whether degree of orientation (F) in any Miller plane calculated based on an XRD spectrum using the Lotgering method is within a range from −0.2 to 0.2.
Owner:TOYOTA CENT RES & DEV LAB INC

Thermal protection systems for air and space vehicles having hidden fastener attachments

A thermal protection system for use upon an air or space vehicle includes a plurality of thermal protection panels formed of a suitable ceramic matrix composition or other thermally protective material each panel having a continuous outer surface free of penetrations or apertures. A plurality of cooperating fasteners are secured between the outer surface of a host vehicle and the undersurface of the thermal protection panels. The fasteners utilize a latching mechanism to secure the panels to the surface of the host air or space vehicle without requiring penetrations or irregularities in the panel surfaces.
Owner:ARROWHEAD PROD

Scalable thermal control system for spacecraft mounted instrumentation

A spacecraft instrument thermal control method and system providing scalable thermal control of on-board instrument temperature. Adapted for a spacecraft with bus supporting instrumentation and thermal radiator panels, cooling is carried out by one or more active coolers, such as cryocoolers, each mounted to the spacecraft at a radiator spatially separated from the instrument, with cold side of the cooler being thermally coupled to an instrument focal plane or other instrument location requiring cryogenic cooling and the warm side coupled to the radiator. A closed loop temperature control system measures the temperature of the controlled portion of the instrument, and adjusts active cooler drive signals to maintain a specified set point temperature.
Owner:LOCKHEED MARTIN CORP

Heat discharger suitable for application to heat pipes

One object of the present invention is to realize a heat discharger having a high precision and in which heat conduction efficiency is maintained at the bonding between the heat pipe and heat sink. A heat discharger comprises a heat pipe and a heat sink formed separately from the heat pipe and bonded to the heat pipe via solder. The contact surface portion between the heat pipe and the solder and the contact surface portion between the heat sink and the solder are made of a wettable material having a wettablility such that the contacting angle with respect to the solder is 90 degrees or less.
Owner:MITSUBISHI ELECTRIC CORP

Materials for self-transpiring hot skins for hypersonic vehicles or reusable space vehicles

A self-transpiring hot skin for a hypersonic or reusable space vehicle that can provide protection to the vehicle during short periods of abnormally high heat flux (either planned in the flight profile or an off-nominal event). The hot skin includes a ceramic composite structure having an internal cavity that is coupled either to the insulating layer or directly to the support structure of the hypersonic vehicle. The internal cavity includes a material system that vaporizes, sublimes or decomposes into a gas when the temperature exceeds the upper temperature capability of the composite material. The gas transpires through the outer layer of the composite material to provide cooling to the outer layer below the upper temperature capability. Cooling may occur both by conduction of heat from the composite material to the transpiring gas and by the interaction of the transpiring gas with the boundary layer of hypersonic flow over the outer surface, leading to a reduction of the heat flux entering the surface.
Owner:THE BOEING CO

Landing device for a space probe, and landing method for a probe provided with such a device

The invention relates to a space probe (1) that comprises a descent module with a mobile exploration vehicle (3), characterised in that the descent module is a landing module (2) inside which the mobile exploration vehicle is fastened, the landing module being provided with landing legs (4) which can be deployed under the lower level of the mobile exploration vehicle.
Owner:ASTRIUM GMBH

Deployable heat shield and deceleration structure for spacecraft

An apparatus for heat shielding and deceleration of a spacecraft comprises an unfoldable shield of individual panels made of a high temperature resistant fiber reinforced ceramic and pivotally mounted on the outer structure of the spacecraft. An unfolding ring slides axially along the body of the spacecraft. The panels are pivotally connected to the unfolding ring by compression struts acting as toggle levers. Tension springs pull the unfolding ring axially along the spacecraft body to toggle out the compression struts so as to outwardly pivotally deploy the panels. The unfoldable shield can be arranged on the forward end or the rear end of the spacecraft relative to its flight direction upon entry into the atmosphere.
Owner:AIRBUS DEFENCE & SPACE

Deployable radiator having an increased view factor

ActiveUS20130200221A1Improving thermal rejectionSimple processCosmonautic vehiclesCosmonautic power supply systemsGeostationary orbitView factor
A geostationary earth orbit (GEO) spacecraft is disclosed that includes a body with north, east, south, and west sides and a north-south axis. The spacecraft has at least one deployable radiator rotatably coupled to the body. The deployable radiator has a stowed position proximate to one of the east and west sides and a deployed position that is greater than 90 degrees from the north-south axis in a direction away from the respective one of the east and west sides.
Owner:LOCKHEED MARTIN CORP

Composite Heat Shield

A composite heat shield includes a ceramic composite heat shield body comprising a pair of generally spaced-apart heat shield side panels, a heat shield bottom panel extending between the heat shield side panels and having a heat exposure surface, a heat shield top panel extending between the heat shield side panels in spaced-apart relationship with respect to the heat shield bottom panel and having at least one heat shield surface and at least one heat shield cavity defined between the heat shield bottom panel and the heat shield top panel.
Owner:THE BOEING CO

Composite heat shield for spacecraft reentry body

InactiveCN105659755BGuaranteed ablation resistanceLow thermal conductivityCosmonautic thermal protectionFiberRe entry
The invention discloses a composite heat-proof layer scheme for a spacecraft reentry body, belonging to the technical field of spacecraft heat protection. The purpose of the utility model is to provide a novel composite structure heat-proof layer capable of coping with severe heat environment. The technical scheme is as follows: a composite heat-proof layer for a spacecraft reentry body, which is characterized in that it is composed of a heat-insulating layer and an ablation layer, and the ablation layer is formed by winding fiber reinforced material impregnated with phenolic resin. A method for forming a heat-resistant layer of a composite structure, which is characterized in that it includes the following steps: forming the heat-insulating layer, compounding the formed heat-insulating layer with an ablation layer, curing the formed composite-structured heat-resistant layer under high temperature pressure, and machining forming. It achieves the purpose of reducing the thermal conductivity and temperature conductivity of the heat-resistant component. The component is light in weight and has excellent performance, which can meet the requirements for improving the heat-resistant performance of various spacecraft reentry bodies at present, and is suitable for industrial production.
Owner:北京玻钢院复合材料有限公司

Bi-material composite structure with reduced thermal expansion

A planar two material structure comprising a first material having a coefficient of thermal expansion greater than zero and a second material having a second coefficient of thermal expansion greater than zero. The two materials structurally combined in a plurality of repetitive for or six sided unit cells having a combined coefficient of thermal expansion less than the coefficient of thermal expansion of either material alone.
Owner:AIR FORCE UNITED STATES OF AMERCIA THE AS REPRESENTED BY THE SEC OF THE

Satellite Having Multiple Aspect Ratios

A high capacity satellite having multiple aspect ratios is configured to have at least two modules. Each module includes a first panel and a third panel facing, in an on-orbit configuration, respectively, toward north and south and having a width in an east-west direction (EW width); and a second and a fourth panel oriented, in the on-orbit configuration, respectively, east and west and having a width in the north-south direction (NS width). Each module has a respective aspect ratio of EW width to NS width, a first module is configured with a first aspect ratio, a second module is configured with a second aspect ratio; and the second aspect ratio is substantially larger than the first aspect ratio. At least one antenna reflector is disposed, during launch, proximate to at least one of the first and third panel of the second module.
Owner:MAXAR SPACE LLC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products