Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

455 results about "Tissue Adhesion" patented technology

A fibrinous or fibrous connection between two surfaces or tissues, connecting tissues or organs that are not normally attached.

In situ-forming hydrogel for tissue adhesives and biomedical use thereof

ActiveUS20120156164A1Excellent biocompatibility and mechanical strengthExcellent tissue adhesivenessAntibacterial agentsOrganic active ingredientsDrugTissue adhesives
Disclosed herein are an in situ-forming, bioadhesive hydrogel and the medical uses thereof. Being formed by in situ crosslinking through an enzymatic reaction, the hydrogel has an advantage over conventional bioadhesive hydrogels in terms of biocompatibility. In addition, the in situ-forming bioadhesive hydrogel has excellent biocompatibility and mechanical strength and has excellent tissue adhesiveness thanks to modification with / without dopa derivatives. The hydrogel finds a variety of applications in the biomedical field, including bioadhesives or hemostats, implant substances for tissue regeneration and augmentation, carriers for delivering biologically active materials or drugs, etc.
Owner:AJOU UNIV IND ACADEMIC COOP FOUND

Biomedical foams

ActiveUS20060008419A1Reduce morbidityIncrease patient 's convenienceImpression capsSurgical adhesivesPolyesterAbsorbent material
The invention relates, generally, to porous absorbent materials which are suitable for packing antrums or other cavities of the human or animal body. More particularly, it relates to hydrophilic biodegradable foams, which may be used, e.g., in the form of a plug or tampon, for instance for controlling bleeding, wound closure, prevent tissue adhesion and / or support tissue regeneration. The invention provides an absorbent foam, suitable for packing antrums or other cavities of the human or animal body, comprising a biodegradable synthetic polymer, which polymer comprises —C(O)—O— groups in the backbone of the polymer, for instance polyurethane and / or polyester units combined with polyethers.
Owner:STRYKER EURO OPERATIONS HLDG LLC

Implantable materials and methods for inhibiting tissue adhesion formation

Described are materials and methods for inhibiting the formation of tissue adhesions. In one aspect, a prosthetic tissue support mesh, and especially such a mesh comprised of a remodelable material that promotes tissue ingrowth, incorporates an effective amount of an anti-inflammatory compound such as a non-steroidal anti-inflammatory drug (NSAID) to inhibit the formation of tissue adhesions to the mesh and / or to surrounding tissues when implanted in a patient. Also described are materials and methods for increasing the length of persistence of implanted resorbable materials, and especially implanted bioremodelable materials, using an anti-inflammatory compound such as an NSAID.
Owner:COOK BIOTECH

Treatment or prophylaxis of diseases caused by pilus-forming bacteria

Novel methods for the treatment and / or prophylaxis of diseases caused by tissue-adhering bacteria are disclosed. By interacting with periplasmic molecular chaperones it is achieved that the assembly of pili is prevented or inhibited and thereby the infectivity of the bacteria is diminished. Also disclosed are methods for screening for drugs as well as methods for the de novo design of such drugs, methods which rely on novel computer drug modelling methods involving an approximative calculation of binding free energy between macromolecules. Finally, novel pyranosides which are believed to be capable of interacting with periplasmic molecular chaperones are also disclosed.
Owner:WASHINGTON UNIV IN SAINT LOUIS +1

Preparation method of biological mimetic tissue adhesive

The invention relates to a preparation method of a biological mimetic and structural bionic tissue adhesive in order to overcome disadvantages of present technological technologies for preparing mussel mucoprotein bionic biological tissue adhesives and improve the viscosity, the biocompatibility and the structural bionic property of a material. The preparation method comprises the following steps: grafting a natural polymer material with dopamine or other catechol group-containing derivatives through an amidation reaction by adopting DMTMM as a carboxyl group activator; and further modifying the grafted natural polymer material with lysine or polylysine by adopting the same technology to obtain the novel biological mimetic and structural bionic tissue adhesive containing dopamine analog and polylysine analog. The tissue adhesive plays a full role in tissue adhesion in wet and physiologic environment, has good tissue adherence and high biological safety, and can be slowly degraded in the tissue healing process until complete degradation. The preparation method of the biological adhesive has the advantages of simplicity, mild reaction conditions, increase of the reaction efficiency, improvement of the operability of the enterprise production process, and facilitation of amplified production of enterprises.
Owner:SHANGHAI QISHENG BIOLOGICAL PREPARATION CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products