Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

74 results about "Structural variant" patented technology

Structural variation (also genomic structural variation) is the variation in structure of an organism's chromosome. It consists of many kinds of variation in the genome of one species, and usually includes microscopic and submicroscopic types, such as deletions, duplications, copy-number variants, insertions, inversions and translocations.

Structural variants of antibodies for improved therapeutic characteristics

The present invention provides substituted humanized, chimeric or human anti-CD20 antibodies or antigen binding fragments thereof and bispecific antibodies or fusion proteins comprising the substituted antibodies or antigen binding fragments thereof. The antibodies, fusion proteins or fragments are useful for treatment of B-cell disorders, such as B-cell malignancies and autoimmune diseases, as well as GVHD, organ transplant rejection, and hemolytic anemia and cryoglobulinemia. Amino acid substitutions, particularly substitution of an aspartate residue at Kabat position 101 of CDR3 VH (CDRH3), result in improved therapeutic properties, such as decreased dissociation rates, improved CDC activity, improved apoptosis, improved B-cell depletion and improved therapeutic efficacy at very low dosages. Veltuzumab, a humanized anti-CD20 antibody that incorporates such sequence variations, exhibits improved therapeutic efficacy compared to similar antibodies of different CDRH3 sequence, allowing therapeutic effect at dosages as low as 200 mg or less, more preferably 100 mg or less, more preferably 80 mg or less, more preferably 50 mg or less, most preferably 30 mg or less of naked antibody when administered i.v. or s.c.
Owner:IMMUNOMEDICS INC

Systems and methods for clonal replication and amplification of nucleic acid molecules for genomic and therapeutic applications

The present invention provides for methods, reagents, apparatuses, and systems for the replication or amplification of nucleic acid molecules from biological samples. In one embodiment of the invention, the nucleic molecules are isolated from the sample, and subjected to fragmenting and joining using ligating agents of one or more hairpin structures to each end of the fragmented nucleic molecules to form one or more dumbbell templates. The one or more dumbbell templates are contacted with at least one substantially complementary primer attached to a substrate, and subjected to rolling circle replication or rolling circle amplification. The resulting replicated dumbbell templates or amplified dumbbell templates are used in numerous genomic applications, including whole genome de novo sequencing; sequence variant detection, structural variant detection, determining the phase of molecular haplotypes, molecular counting for aneuploidy detection; targeted sequencing of gene panels, whole exome, or chromosomal regions for sequence variant detection, structural variant detection, determining the phase of molecular haplotypes and/or molecular counting for aneuploidy detection; study of nucleic acid-nucleic acid binding interactions, nucleic acid-protein binding interactions, and nucleic acid molecule expression arrays; and testing of the effects of small molecule inhibitors or activators or nucleic acid therapeutics.
Owner:REDVAULT BIOSCI

Stochastic molecular binding simulation

The invention provides methods of dynamically simulating molecular interactions between a target molecule and a plurality of ligand molecules. The ligand molecules may be presented in the model as a homogeneous set of identical ligands or as a heterogeneous set of different ligands, such as, for example, a set of structural variants of a ligand molecule. Typically, the ligand molecule will be a small organic compound, such as a drug or other small molecule, and the ligand will be a protein or a protein domain, a nucleic acid (i.e., DNA, RNA), or a biomolecular complex of proteins and / or nucleic acid molecules. Unlike all known molecular dynamics simulation methods, the invention provides ligand molecules to the simulation's interaction environment(s) in excess relative to the target molecule.
Owner:LOS ALAMOS NATIONAL SECURITY +1

Systems and methods for clonal replication and amplification of nucleic acid molecules for genomic and therapeutic applications

The present invention provides for methods, reagents, apparatuses, and systems for the replication or amplification of nucleic acid molecules from biological samples. In one embodiment of the invention, the nucleic molecules are isolated from the sample, and subjected to fragmenting and joining using ligating agents of one or more hairpin structures to each end of the fragmented nucleic molecules to form one or more dumbbell templates. The one or more dumbbell templates are contacted with at least one substantially complementary primer attached to a substrate, and subjected to rolling circle replication or rolling circle amplification. The resulting replicated dumbbell templates or amplified dumbbell templates are used in numerous genomic applications, including whole genome de novo sequencing; sequence variant detection, structural variant detection, determining the phase of molecular haplotypes, molecular counting for aneuploidy detection; targeted sequencing of gene panels, whole exome, or chromosomal regions for sequence variant detection, structural variant detection, determining the phase of molecular haplotypes and / or molecular counting for aneuploidy detection; study of nucleic acid - nucleic acid binding interactions, nucleic acid - protein binding interactions, and nucleic acid molecule expression arrays; and testing of the effects of small molecule inhibitors or activators or nucleic acid therapeutics.
Owner:REDVAULT BIOSCI

Model-independent genome structure variation detection system and method

The invention provides a model-independent genome structure variation detection system and method, wherein a model-independent structure variation detection theory is used as a core, and structure variation detection without depending on any variation model is achieved through a variation signal extraction module, a frequent maximum subgraph mining module and a classification module. According tothe system, a frequent variation pattern mining module is used for capturing the characteristics of structural variation left on a genome, and judging a potential structural variation region only by mining abnormal points in a large amount of normal data; and according to different genome disturbance modes of different variation types, different arrangement sequences of variation signals are further caused, and the different variation types are classified on the basis of the different arrangement sequences in combination with a deep learning model with a memory function. According to the invention, the system does not depend on any variation model, so that the variation detection sensitivity and error rate are greatly reduced; and the system is suitable for detection of complex variation types, and an additional structural variation model does not need to be established.
Owner:XI AN JIAOTONG UNIV

A computer-implemented and reference-free method for identifying variants in nucleic acid sequences

InactiveUS20200005898A1Type accurateUnprecedented performanceData visualisationProteomicsNucleotideVariome
There is provided a computer-implemented method for identifying of nucleic acid variants between two cells, such as a normal cell vs. a pathological cell of a patient, or a cell at two different stages of development. The method is alignment-free, as it does not depend on the use of a reference genome, and is based on the generation and comparison of polymorphic k-mers derived from the nucleotide sequence reads of both biological states. The invention accurately identifies all sorts of genetic variants, ranging from single nucleotide substitutions (SNVs) to large structural variants with great sensitivity and specificity. As a major novelty, it also identifies non-human insertions, such as those derived from retroviruses. Altogether, this invention allows the integration with specific hardware architectures in order to speed up the executions to an unprecedented level.
Owner:BARCELONA SUPERCOMPUTING CENT CENT NAT DE SUPERCOMPUTACION +2
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products