Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

501 results about "Molecular binding" patented technology

Molecular binding is an attractive interaction between two molecules that results in a stable association in which the molecules are in close proximity to each other.It is formed when atoms or molecules bind together by sharing of electrons. It often but not always involves some chemical bonding.

Novel peptides and combination of peptides for use in immunotherapy against small cell lung cancer and other cancers

The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
Owner:IMMATICS BIOTECHNOLOGIES GMBH

Method and apparatus for reading reporter labeled beads

Combinatorially-synthesized deoxyribonucleic acid (DNA) oligonucleotides attached to encoded beads that are hybridized to amplified and labeled genomic DNA or ribonucleic acid (RNA) are analyzed using a flow imaging system. Oligonucleotides and corresponding reporters are bound to the surfaces of a plurality of small beads such that different beads bear different oligo sequences. Each bead bears a unique optical signature comprising a predefined number of unique reporters, where each reporter comprises a predefined combination of different fluorochromes. The composite spectral signature in turn identifies the unique nucleotide sequence of its attached oligo chains. This optical signature is rapidly decoded using an imaging system to discriminate the different reporters attached to each bead in a flow in regard to color and spatial position on the bead.
Owner:AMNIS CORP

Peptide-based vaccine for influenza

A human synthetic peptide-based influenza vaccine for intranasal administration comprises a mixture of flagella containing at least four epitopes of influenza virus reactive with human cells, each expressed individually in Salmonella flagellin, said influenza virus epitopes being selected from the group consisting of: (i) one B-cell hemagglutinin (HA) epitope; (ii) one T-helper hemagglutinin (HA) or nucleo-protein (NP) epitope that can bind to many HLA molecules; and (iii) at least two cytotoxic lymphocyte (CTL) nucleoprotein (NP) or matrix protein (M) epitopes that are restricted to the most prevalent HLA molecules in different human populations.
Owner:YEDA RES & DEV CO LTD

Affinity membrane for capture of a target biomolecule and formation thereof by site-directed immobilization of a capture biomolecule

Compositions and methods are taught for directing the orientation of an immobilized capture biomolecule on a hydrophobic membrane. The method comprises layering at least one tie layer on a hydrophobic membrane, adding an amine functional layer on top of at least one tie layer; and attaching an alignment biomolecule to the amine functional layer. The alignment biomolecule has the ability to either capture a target biomolecule itself and thus be considered a capture biomolecule, or bind and orient the immobilized capture biomolecule so as to maximize the binding activity of the immobilized capture biomolecule. In one embodiment, a nickel-coordinated amine functional layer binds with a histidine-tagged alignment biomolecule. In another embodiment, an amine functional layer reacts, via tyrosinase catalysis, with a tyrosine residue in an alignment biomolecule.
Owner:MARYLAND UNIV OF +1

Biological component comprising artificial membrane

A biocompatible biological component is provided comprising a membrane-mimetic surface film covering a substrate. Suitable substrates include hydrated substrates, e.g. hydrogels which may contain drugs for delivery to a patient through the membrane-mimetic film, or may be made up of cells, such as islet cells, for transplantation. The surface may present exposed bioactive molecules or moieties for binding to target molecules in vivo, for modulating host response when implanted into a patient (e.g. the surface may be antithrombogenic or antiinflammatory) and the surface may have pores of selected sizes to facilitate transport of substances therethrough. An optional hydrophilic cushion or spacer between the substrate and the membrane-mimetic surface allows transmembrane proteins to extend from the surface through the hydrophilic cushion, mimicking the structure of naturally-occurring cells. An alkylated layer directly beneath the membrane-mimetic surface facilates bonding of the surface to the remainder of the biological component. Alkyl chains may extend entirely through the hydrophilic cushion when present. To facilitate binding, the substrate may optionally be treated with a polyelectrolyte or alternating layers of oppositely-charged polyelectrolytes to facilitate charged binding of the membrane-mimetic film or alkylated layer beneath the membrane-mimetic film to the substrate. The membrane-mimetic film is preferably made by in situ polymerization of phospholipid vesicles.
Owner:EMORY UNIVERSITY

Preparation method and application of hydrophobic modified guar gum

InactiveCN102827300ANot easy to degradePreserve macromolecular quality propertiesWater-repelling agents additionCelluloseOrganic acid
The invention discloses a preparation method and an application of hydrophobic modified guar gum. The method comprises the following steps of: suspending guar gum in an ionic liquid, adding a basic catalyst, and alkalifying at the temperature of 10-40 DEG C; gradually heating under the protection of nitrogen, dropwise adding a modifying agent slowly, and heating to 30-80 DEG C for performing a modification reaction; and after the reaction, adding organic acid for adjusting the pH to 5-7, soaking and washing with ethanol, filtering, and drying a filter cake in vacuum to obtain the hydrophobic modified guar gum. A hydrophobic alkyl long chain is introduced into guar gum hydroxyl, and a terminal group is a carboxylic acid group, so that the water dissolving speed of the guar gum is increased, the macromolecular quality characteristic of the guar gum is protected to the maximum extent, and the guar gum is endowed with hydrophobic performance. Compared with other modified guar gum, the hydrophobic guar gum has the advantages of high molecular weight, high compatibility with cellulose, increase in the molecular bonding force of cellulose-guar gum, improvement on the paper strength and applicability to a paper-making wet part chemical process as a reinforcing agent and a surface sizing agent.
Owner:SOUTH CHINA UNIV OF TECH

Artificial proteins with reduced immunogenicity

The invention relates to artificial modified proteins, preferably fusion proteins, having a reduced immunogenicity compared to the parent non-modified molecule when exposed to a species in vivo. The invention relates, above all, to novel immunoglobulin fusion proteins which essentially consist of an immunoglobulin molecule or a fragment thereof covalently fused via its C-terminus to the N-terminus of a biologically active non-immunoglobulin molecule, preferably a polypeptide or protein or a biologically active fragment thereof. In a specific embodiment, the invention relates to fusion proteins consisting of an Fc portion of an antibody which is fused as mentioned to the non-immunological target molecule which elicits biological or pharmacological efficacy. The molecules of the invention have amino acid sequences which are altered in one or more amino acid residue positions but have in principal the same biological activity as compared with the non-altered molecules. The changes are made in regions of the molecules which are identified as T-cell epitopes, which contribute to an immune reaction in a living host. Thus, the invention also relates to a novel method of making such fusion proteins by identifying said epitopes comprising calculation of T-cell epitope values for MHC Class II molecule binding sites in a peptide by computer-aided methods.
Owner:MERCK PATENT GMBH

Consensus configurational bias Monte Carlo method and system for pharmacophore structure determination

InactiveUS6341256B1Accurate distance measurementMake a pharmacophore structure determinationPeptide librariesNanotechNMR - Nuclear magnetic resonancePeptide
In a specific embodiment, this invention includes a method for determining an accurate, consensus pharmacophore structure shared by compounds that bind selectively to a target molecule. Optionally, the method begins with screening a diversity library against the target molecule of interest to pick the selectively binding members. Next the structure of the selected members is examined and a candidate pharmacophore responsible for the binding to the target molecule is determined. Next, preferably by REDOR nuclear magnetic resonance, several highly accurate interatomic distances are determined in certain of the selected members which are related to the candidate pharmacophore. A highly accurate consensus, configurational bias, Monte Carlo method determination of the structure of the candidate pharmacophore is made using the structure of the selected members and incorporating as constraints the shared candidate pharmacophore and the several measured distances. This determination is adapted to efficiently examine only relatively low energy configurations while respecting any structural constraints present in the organic diversity library. If the diversity library contains short peptides, the determination respects the known degrees of freedom of peptides as well as any internal constraints, such as those imposed by disulfide bridges. Finally, the highly accurate pharmacophore so determined is used to select lead organics for drug development targeted at the initial target molecule.
Owner:CURAGEN CORP

Peptide derivatives, preparation and uses thereof

The invention relates to peptide derivatives (peptides and pseudo-peptides) and the use thereof as vectors for molecules of interest. The invention also relates to conjugates containing a peptide derivative of the invention bound to a molecule of interest. The peptides of the invention can be used, in particular, to vectorize, generally in the form of prodrug conjugates, molecules of pharmaceutical or diagnostic interest such as, for example, therapeutic molecules, imaging or diagnostic agents, or molecular probes, across cell membranes of different tissues or organs, healthy or pathologic, and in particular to enable their transport across physiological barriers of the nervous system such as the Blood brain barrier (BBB), Blood-spinal cord barrier (BSCB), or Blood-retinal barrier (BRB).
Owner:UNIV DE PROVENCE D AIX MARSEILLE I +2

Patterning and alteration of molecules

The present invention provides a series of methods, compositions, and articles for patterning a surface with multiple, aligned layers of molecules, by exposing the molecules to electromagnetic radiation. In certain embodiments, a single photomask acts as an area-selective filter for light at multiple wavelengths. A single set of exposures of multiple wavelengths through this photomask may make it possible to fabricate a pattern comprising discontinuous multiple regions, where the regions differ from each other in at least one chemical and / or physical property, without acts of alignment between the exposures. In certain embodiments, the surface includes molecules attached thereto that can be photocleaved upon exposure to a certain wavelength of radiation, thereby altering the chemical composition on at least a portion of the surface. In some embodiments, the molecules attached to the surface may include thiol moieties (e.g., as in alkanethiol), by which the molecule can become attached to the surface. In some embodiments, the molecules may be terminated at the unattached end with photocleavable groups. In other embodiments, a molecule that was photocleaved may be exposed to another molecule that binds to the photocleaved molecule. In certain cases, the molecules may be terminated at the unattached end with hydrophilic groups that may, for example, be resistant to the adsorption of proteins. In other cases, the molecules may be terminated at the unattached end with end groups that are not resistant to the adsorption of proteins. In certain embodiments, the techniques are used to pattern simultaneously two different regions that are resistant to the adsorption of proteins, and a third region that does not resist the adsorption of proteins.
Owner:PRESIDENT & FELLOWS OF HARVARD COLLEGE

Detection systems for mass labels

Disclosed are compositions and methods for sensitive detection of one or multiple analytes. The methods utilize special label components, referred to as reporter signals, that can be associated with, incorporated into, or otherwise linked to the analytes. The reporter signals can be altered such that the altered forms of different reporter signals can be distinguished from each other. Sets of reporter signals can be used where two or more of the reporter signals in a set have one or more common properties that allow the reporter signals having the common property to be distinguished and / or separated from other molecules lacking the common property. The reporter signal signals can be bound by the same specific binding molecule. Reporter signals can also be in conjunction with analytes, where no significant physical association between the reporter signals and analytes occurs; or alone, where no analyte is present.
Owner:PERKINELMER HEALTH SCIENCES INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products