Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

49 results about "Hla molecules" patented technology

HLA (human leuckocyte antigen) A group of protein molecules located on bone marrow cells that can provoke an immune response.

Antibodies as T cell receptor mimics, methods of production and uses thereof

The present invention relates to a methodology of producing antibodies that recognize peptides associated with a tumorigenic or disease state, wherein the peptides are displayed in the context of HLA molecules. These antibodies will mimic the specificity of a T cell receptor (TCR) but will have higher binding affinity such that the molecules may be used as therapeutic, diagnostic and research reagents. The method of producing a T-cell receptor mimic of the present invention includes identifying a peptide of interest, wherein the peptide of interest is capable of being presented by an MHC molecule. Then, an immunogen comprising at least one peptide/MHC complex is formed, wherein the peptide of the peptide/MHC complex is the peptide of interest. An effective amount of the immunogen is then administered to a host for eliciting an immune response, and serum collected from the host is assayed to determine if desired antibodies that recognize a three-dimensional presentation of the peptide in the binding groove of the MHC molecule are being produced. The desired antibodies can differentiate the peptide/MHC complex from the MHC molecule alone, the peptide alone, and a complex of MHC and irrelevant peptide. Finally, the desired antibodies are isolated.
Owner:WEIDANZ JON A +2

Antibodies as T cell receptor mimics, methods of production and uses thereof

The present invention relates to a methodology of producing antibodies that recognize peptides associated with a tumorigenic or disease state, wherein the peptides are displayed in the context of HLA molecules. These antibodies will mimic the specificity of a T cell receptor (TCR) but will have higher binding affinity such that the molecules may be used as therapeutic, diagnostic and research reagents. The method of producing a T-cell receptor mimic of the present invention includes identifying a peptide of interest, wherein the peptide of interest is capable of being presented by an MHC molecule. Then, an immunogen comprising at least one peptide / MHC complex is formed, wherein the peptide of the peptide / MHC complex is the peptide of interest. An effective amount of the immunogen is then administered to a host for eliciting an immune response, and serum collected from the host is assayed to determine if desired antibodies that recognize a three-dimensional presentation of the peptide in the binding groove of the MHC molecule are being produced. The desired antibodies can differentiate the peptide / MHC complex from the MHC molecule alone, the peptide alone, and a complex of MHC and irrelevant peptide. Finally, the desired antibodies are isolated.
Owner:TEXAS TECH UNIV SYST

Peptide-based vaccine for influenza

A human synthetic peptide-based influenza vaccine for intranasal administration comprises a mixture of flagella containing at least four epitopes of influenza virus reactive with human cells, each expressed individually in Salmonella flagellin, said influenza virus epitopes being selected from the group consisting of: (i) one B-cell hemagglutinin (HA) epitope; (ii) one T-helper hemagglutinin (HA) or nucleo-protein (NP) epitope that can bind to many HLA molecules; and (iii) at least two cytotoxic lymphocyte (CTL) nucleoprotein (NP) or matrix protein (M) epitopes that are restricted to the most prevalent HLA molecules in different human populations.
Owner:YEDA RES & DEV CO LTD

NY-ESO-1-peptide derivatives, and uses thereof

The invention relates to variant peptides which bind to HLA molecules, leading to lysis of cells via cytolytic T cell lines. The variants are based upon NY-ESO-1 peptides. The peptides can be incorporated into immune tetramers, which are useful as T cell sorters.
Owner:LUDWIG INST FOR CANCER RES

Antibodies at T cell receptor mimics, methods of production and uses thereof

InactiveUS20090042285A1Less timeEfficient at generating a specific responseAnimal cellsImmunoglobulin superfamilyDiseaseSerum ige
The present invention relates to a methodology of producing antibodies that recognize peptides associated with a tumorigenic or disease state, wherein the peptides are displayed in the context of HLA molecules. These antibodies will mimic the specificity of a T cell receptor (TCR) but will have higher binding affinity such that the molecules may be used as therapeutic, diagnostic and research reagents. The method of producing a T-cell receptor mimic of the present invention includes identifying a peptide of interest, wherein the peptide of interest is capable of being presented by an MHC molecule. Then, an immunogen comprising at least one peptide / MHC complex is formed, wherein the peptide of the peptide / MHC complex is the peptide of interest. An effective amount of the immunogen is then administered to a host for eliciting an immune response, and serum collected from the host is assayed to determine if desired antibodies that recognize a three-dimensional presentation of the peptide in the binding groove of the MHC molecule are being produced. The desired antibodies can differentiate the peptide / MHC complex from the MHC molecule alone, the peptide alone, and a complex of MHC and irrelevant peptide. Finally, the desired antibodies are isolated.
Owner:TEXAS TECH UNIV SYST

Method and device for predicting tumor newly-born antigen and storage medium

ActiveCN109584960AComprehensive forecasting methodAccurate responseProteomicsGenomicsBiomarker (petroleum)Wilms' tumor
The invention relates to a method for predicting a tumor newly-born antigen. The method comprises the steps that 1, according to a tumor-embryonal system contrast sample, somatic mutation and gene fusion detection are conducted; 2, for each pair of fusion genes, fusion mutation peptide and corresponding wild peptide are generated; 3, based on each somatic mutation, mutation peptide and corresponding wild peptide are generated; 4, a specific individual genome of a tumor sample is established, and mutation peptide containing multiple mutations is generated; 5, the true and false of mutation peptide of single-mutation and multi-mutation are judged; 6, mutation peptide completely identical to wild protein in other position sequence is removed; 7, HLA molecular subtyping detection is conducted,the appetency of newly-born peptide and HLA molecules is predicted, and newly-born peptide with high appetency is used as a candidate tumor newly-born antigen. The invention further provides a corresponding device and a computer storage medium. By adopting the method and device and the storage medium, the biomarker assessment can be effectively responded to through tumor treatment, and the precise candidate peptide fragment is provided for design of a tumor vaccine.
Owner:XUKANG MEDICAL SCI & TECH (SUZHOU) CO LTD

Antibodies as t cell receptor mimics, methods of production and uses thereof

InactiveUS20110293623A1Less timeEfficient at generating a specific responseImmunoglobulin superfamilyImmunoglobulins against animals/humansDiseaseSerum ige
The present invention relates to a methodology of producing antibodies that recognize peptides associated with a tumorigenic or disease state, wherein the peptides are displayed in the context of HLA molecules. These antibodies will mimic the specificity of a T cell receptor (TCR) but will have higher binding affinity such that the molecules may be used as therapeutic, diagnostic and research reagents. The method of producing a T-cell receptor mimic of the present invention includes identifying a peptide of interest, wherein the peptide of interest is capable of being presented by an MHC molecule. Then, an immunogen comprising at least one peptide / MHC complex is formed, wherein the peptide of the peptide / MHC complex is the peptide of interest. An effective amount of the immunogen is then administered to a host for eliciting an immune response, and serum collected from the host is assayed to determine if desired antibodies that recognize a three-dimensional presentation of the peptide in the binding groove of the MHC molecule are being produced. The desired antibodies can differentiate the peptide / MHC complex from the MHC molecule alone, the peptide alone, and a complex of MHC and irrelevant peptide. Finally, the desired antibodies are isolated.
Owner:WEIDANZ JON A
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products