Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1027results about How to "Increase photosensitivity" patented technology

Imaging optical lens assembly

ActiveUS8000031B1High resolutionReduce total track lengthLensPhysicsConcave surface
This invention provides an imaging optical lens assembly including: in order from an object side toward an image side: a first lens with positive refractive power and having a convex object-side surface, a second lens with negative refractive power and having a convex object-side surface and a concave image-side surface, a third lens with positive refractive power and having a concave object-side surface and a convex image-side surface, a fourth lens with negative refractive power and having a concave image-side surface, the object-side and image-side surfaces being aspheric, and a fifth lens having a concave image-side surface, the object-side and image-side surfaces being aspheric. The imaging optical lens assembly further comprises an aperture stop, disposed between an imaged object and the second lens, and an electronic sensor, disposed at the image plane for image formation.
Owner:LARGAN PRECISION

Imaging lens system

This invention provides an imaging lens system including, in order from an object side to an image side: a first lens with positive refractive power having a convex object-side surface; a second lens with negative refractive power; a third lens having a concave image-side surface; a fourth lens with positive refractive power; a fifth lens with negative refractive power having a concave image-side surface, at least one surface thereof having at least one inflection point; and an aperture stop disposed between an imaged object and the third lens. The on-axis spacing between the first lens and second lens is T12, the focal length of the imaging lens system is f, and they satisfy the relation: 0.5<(T12 / f)×100<15.
Owner:LARGAN PRECISION

Photocurable Compositions

An optical moulding process is disclosed comprising the sequential steps of: (a)(y) forming a layer of a photocurable composition; and (bXz) irradiating selected areas of the composition in the layer with radiation from a radiation source, thereby curing the composition in said selected areas and repeating the steps a) and b) on top of an earlier cured layer to form a three dimensional structure, wherein the radiation source used in step b) is a non-coherent source of radiation and wherein the photocurable composition comprises at least two curable components: (i) 45%-95% (and preferably at least 50%, more preferably at least 60%, e.g. at least 70%) by weight of the total curable components in the composition is a first component that is photocurable and that is such that, when cured in the presence of a photocuring initiator by exposure to UV radiation having an energy of 30 mJ/cm2, at least 90% of the component is cured within 50 milliseconds; and (ii) 5% to 55% (and preferably 10-40%, more preferably 15 to 30%, e.g. about 20%) by weight of the total curable components in the composition is a second component that results in the composition, on curing, shrinking, in a linear direction, by less than 3% and preferably that results in the composition having, after cure, a Tg of greater than 50° C., preferably at least 100° C. and more preferably at least 120° C.
Owner:3D SYST INC

Scanning 3D imager

A scanning 3D imager for recording images of a scene comprises a light source configured to emit a fan-shaped pulsed light beam with linear cross section, a scanning mirror arranged in the light path of the light beam to guide the light beam into the scene and to successively illuminate slices of the scene by sweeping the light beam through the scene transversally to the linear cross section thereof, and an imager chip arranged to receive light from the scene via the scanning mirror, the imager chip comprising an photosensor array disposed in such a way that the illuminated slices of the scene are successively imaged thereon.
Owner:IEE INT ELECTRONICS & ENG SA

Image processing method and terminal

The invention discloses an image processing method and a terminal. The method comprises steps: a black white image shot by a first camera of the terminal and a color image shot by a second camera of the terminal are obtained; sharp processing of the color image is carried out according to the black white image; black white image brightness information of the black white image and color image color information independent of the color image brightness information of the color image after sharp processing are extracted, synthesis of a color output image is carried out according to the black white image brightness information and the color image color information; the color output image is output. The picture shooting quality of the terminal can be raised.
Owner:SHENZHEN GIONEE COMM EQUIP

Polarisation asymmetric active optical waveguide, method of its production, and its uses

A method of producing an active optical waveguide having asymmetric polarization, said method comprising the steps of (a) providing an active optical waveguide (10) comprising: (i) a transverse refractive index profile (21) comprising a guiding region (11), an intermediate region (13), and a non-guiding region (12); (ii) a transverse photorefractive dopant profile (31) comprising a constant or graded photorefractive dopant concentration within at least one of the guiding, non-guiding and intermediate regions, except that the photorefractive dopant is not located solely in the guiding region; and (iii) exhibiting in said guiding region, intermediate region, or both, light guiding modes having different polarizations; and (b) exposing at least a part (10a, 10b) of the active optical waveguide to an effective transverse illumination of light (20) reacting with the photorefractive dopant and modifying said transverse refractive index profile; said part of the active optical waveguide being exposed to a fluence selectively suppressing the propagation of the light guiding modes having different polarizations so that the propagation of one mode is less suppressed than the propagation of the other mode(s). Such an active optical waveguide, single polarization mode optical waveguide lasers and multi-wavelength single polarization mode optical waveguide lasers comprising such an active optical waveguide, methods of their production, and their uses in telecommunications, in spectroscopy, in sensors and in absolute calibrated laser light sources.
Owner:KOHERAS +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products