Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

2506results about How to "Improve homogeneity" patented technology

Heating system comprising semiconductor light sources

The invention describes a heating system (100) and a corresponding method of heating a heating surface (180) of an object (150, 950) to a processing temperature of at least 100° C., wherein the heating system (100) comprises semiconductor light sources (115), and wherein the heating system (100) is adapted to heat an area element of the heating surface (180) with at least 50 semiconductor light sources (115) at the same time. The heating system (100) may be part of a reactor for processing semiconductor structures. The light emitted by means of the semiconductor light sources (115) overlaps at the heating surface (180). Differences of the characteristic of one single semiconductor light source (115) may be blurred at the heating surface (180) such that a homogeneous temperature distribution across a processing surface of a, for example, wafer may be enabled.
Owner:TRUMPF PHOTONIC COMPONENTS GMBH

Production of Heteromultimeric Proteins

ActiveUS20110287009A1Reduction in yieldDecreased/elimination of effector functionAntipyreticAnalgesicsEpitopeBiochemistry
Described herein are methods for the efficient production of antibodies and other multimeric protein complexes (collectively referred to herein as heteromultimeric proteins) capable of specifically binding to more than one target. The targets may be, for example, different epitopes on a single molecule or located on different molecules. The methods combine efficient, high gene expression level, appropriate assembly, and ease of purification for the heteromultimeric proteins. The invention also provides methods of using these heteromultimeric proteins, and compositions, kits and articles of manufacture comprising these antibodies.
Owner:F HOFFMANN LA ROCHE & CO AG

Composite oxide, composite oxide carrier and catalyst

The composite oxide and the composite oxide carrier are manufactured by the precursor forming step and firing step. The composite oxide catalyst is obtained by preparing a composite of catalytic components simultaneously with the formation of the precursor of composite oxide in the step of forming the precursor of composite oxide. The composite oxide and the composite oxide carrier are composed of a composite oxide in which at least one of cerium and zirconium, and aluminium disperse with extremely high homogeneity. With this structure, the heat resistance of the carrier is improved and consequently, enlargement of particles of the composite oxide defining the carrier, and sintering of adjacent particles of the composite oxide can be restrained, whereby the catalyst using the composite oxide carrier in accordance with the present invention is excellent in heat resistance.
Owner:TOYOTA CENT RES & DEV LAB INC

Lithium iron phosphate cathode materials with enhanced energy density and power performance

InactiveUS20090155689A1Powerful performanceHigh discharge ratePhosphatesPeroxides/peroxyhydrates/peroxyacids/superoxides/ozonidesFiberPhosphate
The invention is related to a cathode material comprising particles having a lithium metal phosphate core and a pyrolytic carbon deposit, said particles having a synthetic multimodal particle size distribution comprising at least one fraction of micron size particles and one fraction of submicron size particles, said lithium metal phosphate having formula LiMPO4 wherein M is at least Fe or Mn.Said material is prepared by method comprising the steps of providing starting micron sized particles and starting submicron sized particles of at least one lithium metal phosphate or of precursors of a lithium metal phosphate; mixing by mechanical means said starting particles; making a pyrolytic carbon deposit on the lithium metal phosphate starting particles before or after the mixing step, and on their metal precursor before or after mixing the particles; optionally adding carbon black, graphite powder or fibers to the said lithium metal phosphate particles before the mechanical mixing.
Owner:PHOSTECH LITHIUM

Reinforced polymers

Provided is a method for the production of a reinforced polymer, which method comprises:(a) introducing carbon nanotubes into a polymer to provide a mixture of the polymer and the nanotubes;(b) stretching the mixture at or above the melting temperature (Tm) of the polymer to orient the carbon nanotubes; and(c) stretching the mixture in the solid state to further orient the carbon nanotubes.
Owner:FINA RES SA

Process utilizing seeds for making single-wall carbon nanotubes

InactiveUS7052668B2Facilitates nucleation phaseFaster and more reproducible and stable clusteringMaterial nanotechnologyFullerenesMetal catalystGas phase
A gas-phase method for producing high yields of single-wall carbon nanotubes with high purity and homogeneity is disclosed. The method involves using preformed metal catalyst clusters to initiate and grow single-wall carbon nanotubes. In one embodiment, multi-metallic catalyst precursors are used to facilitate the metal catalyst cluster formation. The catalyst clusters are grown to the desired size before mixing with a carbon-containing feedstock at a temperature and pressure sufficient to initiate and form single-wall carbon nanotubes. The method also involves using small fullerenes and preformed sections of single-wall carbon nanotubes, either derivatized or underivatized, as seed molecules for expediting the growth and increasing the yield of single-wall carbon nanotubes. The multi-metallic catalyst precursors and the seed molecules may be introduced into the reactor by means of a supercritical fluid. In addition the seed molecules may be introduced into the reactor via an aerosol or smoke.
Owner:RICE UNIV

Molecular imprinting

The present invention relates to molecularly imprinted polymers comprising tailor-made recognition sites for a target in which said recognition sites are located at or close to the surface of the polymer and / or of pores in the polymer. The molecularly imprinted polymer comprising tailor-made recognition sites for a target is obtainable by polymerising functional monomers and, optionally, cross-linked, optionally in a reaction solvent, in the presence of at least one template immobilised on a support material in a polymerisation process, whereby non-covalent or covalent are formed between said functional monomers and said immobilised template(s), and removing said template(s), and said support material from the molecularly imprinted polymer.
Owner:KLAUS MOSBACH

Process and apparatus for uniform combustion within a molten material

A submerged combustion burner having co-axial fuel and oxidant tubes forming an annular space therebetween, wherein the outer tube extends beyond the end of the inner tube. A burner nozzle having an outside diameter corresponding to the inside diameter of the outer tube is connected to the outlet end of the inner tube and forms a centralized opening in fluid communication with the inner tube and at least one peripheral longitudinally oriented opening in fluid communication with the annular space. In accordance with one embodiment, a longitudinally adjustable rod is disposed within the inner tube for adjustment of fluid flow therethrough, and a cylindrical insert having at least one flame stabilizer for stabilizing a flame produced by the burner is attached to the outlet end of the outer tube. In accordance with another embodiment, fluid flow through the inner tube is achieved by a flow control valve operably connected to the inner tube.
Owner:GAS TECH INST

Method for the production of polypeptides

The present invention relates to a novel method for the production of short chain polypeptides, including polypeptides having up to 3 disulfide bonds and / or structures rich in basic amino acid residues, and open structured short chain polypeptides, e.g. glucagon, glucagon like peptides and their functional analogues, in genetically modified yeast cells, said genetically modified yeast cells, and a method for the preparation of said yeast cells.
Owner:NOVO NORDISK AS

Mesoporous carbon material, carbon/metal oxide composite materials, and electrochemical capacitors using them

The present invention is related to carbon materials having 2-20 nm of mesopore and high porosity, carbon / metal oxide composites which are prepared with said material and wherein metal oxides are deposited in the pores, electrical double-layer capacitors prepared with said carbon material, and electrochemical capacitors prepared with said carbon / metal oxide composite. When the mesoporous carbon is used as an electrode material of electrical double-layer capacitors, in spite of low capacitance value per weight for low surface area, said electrical double-layer capacitor has higher charge storage volume than the previous ones due to low equivalent series resistance. Furthermore, when said carbon / metal oxide composite is used as an electrode material of electrical double-layer capacitor, the capacitor has high capacitance value per unit weight, i.e., 254 F / g, by combining the electrical double-layer capacitor with the pseudo capacitor from the metal oxide.
Owner:VIABLE KOREA

Magnetic nanoparticle compositions, and methods related thereto

Disclosed are biocompatible magnetic nanoparticle compositions for various therapeutic or biological applications, and methods related thereto. Specifically, the present invention pertains to magnetic nanoparticle compositions prepared via high-pressure homogenization processes that include a turbulent flow zone. The methods of production may involve a two-step or a one-step process. The disclosed magnetic nanoparticle compositions may be useful in the treatment of the body, body part, tissue, cell, or body fluid of a subject for a variety of indications. The disclosed magnetic nanoparticle compositions may also be useful in the fixation, separation, transportation, marking or coding of targets, or energy transformation processes.
Owner:NANOTX INC +1

Backlight module for LCD monitors and method of backlighting the same

A backlight module for LCD monitors and method of backlighting are disclosed, in which a dome-shaped lens and a LED light source are employed in the backlight module. This method includes the preparation of a LED light source and a dome lens, fitting the dome lens over the light source, attaching the dome lens and the light source under the optical lens sheets, whereby the optical lens sheet closest to the light source is at a vertical distance X therefrom. The hemispherical lens provides light coverage on the optical lens sheet in a peripheral areas with diameters ranging from 2X to 7X, as compared with the small area (diameter X) using the conventional technique. The dome lens is constructed with a light emergent plane on one side, and a light incident plane around hollow cavity in the center.
Owner:CHIPHOPE

Heterodimerized polypeptide

The present inventors produced a heterodimerized polypeptide having an Fc region formed from two polypeptides with different amino acid sequences (a first polypeptide and a second polypeptide), and succeeded in producing a heterodimerized polypeptide containing an Fc region with improved Fc region function compared to that of a homodimer in which the Fc region is composed of only the first polypeptide or only the second polypeptide by conventional technology.
Owner:CHUGAI PHARMA CO LTD

Biodegradable scaffolds and uses thereof

The invention is directed to scaffolds containing porous polymer material prepared by a process of gas foaming / particulate leaching and a wet granulation step prior to gas foaming and particulate leaching, particularly having a characteristic interconnected pore structure, as well as sustained release of protein, DNA or cells, and to methods for using such porous polymer material for preparation of scaffolds, particularly for tissue engineering.
Owner:NORTHWESTERN UNIV

Low iron high transmission glass with boron oxide for improved optics, durability and refining, and corresponding method

This invention relates to a high transmission low iron glass that includes boron oxide. The boron oxide, added to this low iron glass, has the effect of improving glass refining, homogeneity and quality (lower seed count) through its flux action and improves glass optical parameters of green and clear glass through the change in refractive index and surface tension. Boron oxide lends to broader and weaker absorption band of such transition element(s) as iron which additionally improves the transmittance of low iron clear glass in certain example embodiments of this invention. In certain example embodiments, the addition of boron oxide in certain quantities in advantageous in that it improves the chemical durability of the glass by decreasing the USPX (or USPXIII) value of the glass via suppression of the silica, sodium ions in the glass structure.
Owner:PHOENICIA AMERICA ISRAEL FLAT GLASS +1

Rubber composition based on diene elastomer and a reinforcing silicon carbide

A rubber composition usable for the manufacture of tires, based on at least one diene elastomer, a reinforcing inorganic filler and a coupling agent providing the bond between the inorganic filler and the elastomer, wherein said inorganic filler comprises a silicon carbide having the following characteristics: (a) a BET specific surface area of between 20 and 200 m<2> / g; (b) an average particle size (by mass), dw, of between 10 and 350 nm. Tires or semi-finished products for tires such as treads comprising said rubber composition.
Owner:MICHELIN RECH & TECH SA

CVD diamond-coated composite substrate containing a carbide-forming material and ceramic phases and method for making same

The present invention relates to a composite material and the method of making same, which comprises a CVD diamond coating applied to a composite substrate of ceramic material and an unreacted carbide-forming material of various configurations and for a variety of applications. One example of the composite material is a composite of SiC and free silicon metal known as Reaction-Bonded Silicon Carbide. Several examples of applications of the invention include: 1) heads or disks for conditioning polishing pads, including pads used in Chemical-Mechanical-Planarization, 2) cutting and dressing tool inserts and tips, 3) heat spreaders for electronic devices, and 4) wear components including mechanical seals and pump seals.
Owner:MORGAN ADVANCED CERAMICS

Process utilizing pre-formed cluster catalysts for making single-wall carbon nanotubes

InactiveUS6913789B2Facilitates nucleation phaseFaster and more reproducible and stable clusteringMaterial nanotechnologyFibre chemical featuresGas phaseMetal catalyst
A gas-phase method for producing high yields of single-wall carbon nanotubes with high purity and homogeneity is disclosed. The method involves using preformed metal catalyst clusters to initiate and grow single-wall carbon nanotubes. In one embodiment, multi-metallic catalyst precursors are used to facilitate the metal catalyst cluster formation. The catalyst clusters are grown to the desired size before mixing with a carbon-containing feedstock at a temperature and pressure sufficient to initiate and form single-wall carbon nanotubes. The method also involves using small fullerenes and preformed sections of single-wall carbon nanotubes, either derivatized or underivatized, as seed molecules for expediting the growth and increasing the yield of single-wall carbon nanotubes. The multi-metallic catalyst precursors and the seed molecules may be introduced into the reactor by means of a supercritical fluid. In addition the seed molecules may be introduced into the reactor via an aerosol or smoke.
Owner:RICE UNIV

Lipo-Conjugation of Peptides

The present invention provides peptide conjugates that are formed between a modified lipid and a glycosyl residue and / or an amino acid residue on a peptide. The modified lipid includes a modifying group and a lipid linking group. Exemplary lipid linking groups include myristoyl, palmitoyl, and isoprenyl moieties.
Owner:NOVO NORDISK AS

Wire-saw and its manufacturing method

PCT No. PCT / JP98 / 00532 Sec. 371 Date Mar. 9, 1999 Sec. 102(e) Date Mar. 9, 1999 PCT Filed Feb. 9, 1998 PCT Pub. No. WO98 / 35784 PCT Pub. Date Aug. 20, 1998The present invention provides a wire saw for use in cutting works of electronics materials or optical materials and a method for manufacturing the same, said wire saw having the following characteristic features. Namely, onto a high-strength core wire 2, abrasive grains 3 having a grain size not smaller than two-thirds the thickness of a layer of resin bond 4 on said core wire 2 but not exceeding a half the diameter of said core wire are fixed with said resin bond, said resin bond containing a filler having a grain size smaller than two-thirds the thickness of said resin bond layer. The thus structured and arranged wire saw has an improved efficiency and precision in cutting. The wire saw can be manufactured readily by using an enamelling oven.
Owner:ALLIED MATERIAL +1

Lithium-containing composite oxide and nonaqueous secondary cell using the same, and method for manufacturing the same

Because of the composition represented by General Formula: Li1+x+alphaNi(1-x-y+delta) / 2Mn(1-x-y-delta) / 2MyO2 (where 0<=x<=0.05, -0.05<=x+alpha<=0.05, 0<=y<=0.4; -0.1<=delta<=0.1 (when 0<=y<=0.2) or -0.24<=delta<=0.24 (when 0.2<=y<=0.4); and M is at least one element selected from the group consisting of Ti, Cr, Fe, Co, Cu, Zn, Al, Ge and Sn), a high-density lithium-containing complex oxide with high stability of a layered crystal structure and excellent reversibility of charging / discharging can be provided, and a high-capacity non-aqueous secondary battery excellent in durability is realized by using such an oxide for a positive electrode.
Owner:MAXELL HLDG LTD

Biosynthetic implant for soft tissue repair

An implant and a process for preparing such an implant are disclosed. The implant includes a porous layer including collagen, a non-porous layer including a collagenic constituent, and a reinforcement component. The non-porous layer is joined to the porous layer and the reinforcement member is embedded into the non-porous layer. The porous layer has a three dimensional density ranging from about 20 mg collagen / cm3 to about 200 mg collagen / cm3.
Owner:SOFRADIM PROD SAS

Laser Printing System

The invention describes a laser printing system (100) for illuminating an object moving relative to a laser module of the laser printing system (100) in a working plane (180), the laser module comprising at least two laser arrays of semiconductor lasers and at least one optical element, wherein the optical element is adapted to image laser light emitted by the laser arrays, such that laser light of semiconductor lasers of one laser array is imaged to one pixel in the working plane of the laser printing system, and wherein the laser printing system is a 3D printing system for additive manufacturing and wherein two, three, four or a multitude of laser modules (201, 202) are provided, which are arranged in columns (c1, c2) perpendicular to a direction of movement (250) of the object in the working plane (180), and wherein the columns are staggered with respect to each other such that a first laser module (201) of a first column of laser modules (c1) is adapted to illuminate a first area (y1) of the object and a second laser module (202) of a second column (c2) of laser modules is adapted to illuminate a second area (y2) of the object, wherein the first area (y1) is adjacent to the second area (y2) such that continuous illumination of the object is enabled.
Owner:EOS ELECTRO OPTICAL SYST

Method for improved powder layer quality in additive manufacturing

Various embodiments of the present invention relate to a method for forming at a three-dimensional article through successively depositing individual layers of powder material that are fused together with at least one energy beam so as to form the article, said method comprising the steps of generating a model of said three-dimensional article; applying a first powder layer on a work table; directing said at least one energy beam from at least one energy beam source over said work table causing said first powder layer to fuse in first selected locations according to said model to form a first cross section of said three-dimensional article; introducing a predetermined pattern laterally separated from said first cross section for reducing thickness variations in a powder layer provided on top of said first cross section.
Owner:ARCAM AB
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products