Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

774results about "Runtime instruction translation" patented technology

Method and apparatus for multi-function arithmetic

A multiplier capable of performing signed and unsigned scalar and vector multiplication is disclosed. The multiplier is configured to receive signed or unsigned multiplier and multiplicand operands in scalar or packed vector form. An effective sign for the multiplier and multiplicand operands may be calculated and used to create and select a number of partial products according to Booth's algorithm. Once the partial products have been created and selected, they may be summed and the results may be output. The results may be signed or unsigned, and may represent vector or scalar quantities. When a vector multiplication is performed, the multiplier may be configured to generate and select partial products so as to effectively isolate the multiplication process for each pair of vector components. The multiplier may also be configured to sum the products of the vector components to form the vector dot product. The final product may be output in segments so as to require fewer bus lines. The segments may be rounded by adding a rounding constant. Rounding and normalization may be performed in two paths, one assuming an overflow will occur, the other assuming no overflow will occur. The multiplier may also be configured to perform iterative calculations to evaluate constant powers of an operand. Intermediate products that are formed may be rounded and normalized in two paths and then compressed and stored for use in the next iteration. An adjustment constant may also be added to increase the frequency of exactly rounded results.
Owner:ADVANCED SILICON TECH

Computing System with Transactional Memory Using Millicode Assists

A computing system processes memory transactions for parallel processing of multiple threads of execution with millicode assists. The computing system transactional memory support provides a Transaction Table in memory and a method of fast detection of potential conflicts between multiple transactions. Special instructions may mark the boundaries of a transaction and identify memory locations applicable to a transaction. A ‘private to transaction’ (PTRAN) tag, directly addressable as part of the main data storage memory location, enables a quick detection of potential conflicts with other transactions that are concurrently executing on another thread of said computing system. The tag indicates whether (or not) a data entry in memory is part of a speculative memory state of an uncommitted transaction that is currently active in the system. Program millicode provides transactional memory functions including creating and updating transaction tables, committing transactions and controlling the rollback of transactions which fail.
Owner:IBM CORP

Mechanisms for dynamic configuration of virtual processor resources

Mechanisms for dynamically configuring the resources of a virtual multiprocessor are provided. The invention contemplates provision of an apparatus to configure resources for one or more virtual processing elements in a virtual multiprocessor. The apparatus includes a virtual multiprocessor context, one or more virtual processing element contexts, and configuration logic. The virtual multiprocessor context, prescribes the resources, and controls a configuration state of the virtual multiprocessor. The one or more virtual processing element contexts each exclusively correspond to one of the one or more virtual processing elements. The one or more virtual processing element contexts each have first logic, for prescribing whether the one of the one or more virtual processing elements is permitted to configure the resources; and second logic, for prescribing a subset of the resources that is allocated to said one of the one or more virtual processing elements. The configuration logic is coupled to the virtual multiprocessor context and the one or more virtual processing element contexts. The configuration logic detects whether the one of the one or more virtual processing elements is permitted to configure the resources, updates the virtual multiprocessor context to direct that the virtual multiprocessor enter the configuration state, and configures the resources by updating a prescribed virtual processing element context.
Owner:MIPS TECH INC

Method and apparatus for performing multiple types of multiplication including signed and unsigned multiplication

A multiplier capable of performing both signed and unsigned scalar and vector multiplication is disclosed. The multiplier is configured for use in a microprocessor and may include a partial product generator, a selection logic unit, and an adder. The multiplier is configured to receive signed or unsigned multiplier and multiplicand operands in scalar or packed vector form. The multiplier is also configured to receive a first control signal indicative of whether signed or unsigned multiplication is to be performed and a second control signal indicative of whether vector multiplication is to be performed. The multiplier is configured to calculate an effective sign for the multiplier and multiplicand operands based upon each operand's most significant bit and the control signal. The effective signs may then be used by the partial product generation unit and the selection logic to create and select a number of partial products according to Booth's algorithm. Once the partial products have been created and selected, the adder is configured to sum them and output the results, which may be signed or unsigned. When a vector multiplication is performed, the multiplier is configured to generate and select partial products so as to effectively isolate the multiplication process for each pair of vector components.
Owner:ADVANCED MICRO DEVICES INC

Method and apparatus for rounding and normalizing results within a multiplier

A multiplier capable of performing signed and unsigned scalar and vector multiplication is disclosed. The multiplier is configured to receive signed or unsigned multiplier and multiplicand operands in scalar or packed vector form. An effective sign for the multiplier and multiplicand operands may be calculated based upon each operand's most significant bit and a control signal. The effective signs may then be used to create and select a number of partial products according to Booth's algorithm. Once the partial products have been created and selected, they may be summed and the results may be output. The results may be signed or unsigned, and may represent vector or scalar quantities. When a vector multiplication is performed, the multiplier may be configured to generate and select partial products so as to effectively isolate the multiplication process for each pair of vector components. The multiplier may also be configured to sum the products of the vector components to form the vector dot product. The final product may be output in segments so as to require fewer bus lines. The segments may be rounded by adding a rounding constant. Rounding and normalization may be performed in two paths, one assuming an overflow will occur, the other assuming no overflow will occur.
Owner:ADVANCED MICRO DEVICES INC

Method and apparatus for simultaneously multiplying two or more independent pairs of operands and calculating a rounded products

A multiplier capable of performing signed and unsigned scalar and vector multiplication is disclosed. The multiplier is configured to receive signed or unsigned multiplier and multiplicand operands in scalar or packed vector form. An effective sign for the multiplier and multiplicand operands may be calculated based upon each operand's most significant bit and a control signal. The effective signs may then be used to create and select a number of partial products according to Booth's algorithm. Once the partial products have been created and selected, they may be summed and the results may be output. The results may be signed or unsigned, and may represent vector or scalar quantities. When a vector multiplication is performed, the multiplier may be configured to generate and select partial products so as to effectively isolate the multiplication process for each pair of vector components. The multiplier may also be configured to sum the products of the vector components to form the vector dot product. The final product may be output in segments so as to require fewer bus lines. The segments may be rounded by adding a rounding constant. Rounding and normalization may be performed in two paths, one assuming an overflow will occur, the other assuming no overflow will occur.
Owner:GLOBALFOUNDRIES INC

Prefetch instruction extensions

A computer system and method. In one embodiment, a computer system comprises a processor and a cache memory. The processor executes a prefetch instruction to prefetch a block of data words into the cache memory. In one embodiment, the cache memory comprises a plurality of cache levels. The processor selects one of the cache levels based on a value of a prefetch instruction parameter indicating the temporal locality of data to be prefetched. In a further embodiment, individual words are prefetched from non-contiguous memory addresses. A single execution of the prefetch instruction allows the processor to prefetch multiple blocks into the cache memory. The number of data words in each block, the number of blocks, an address interval between each data word of each block, and an address interval between each block to be prefetched are indicated by parameters of the prefetch instruction.
Owner:ADVANCED MICRO DEVICES INC

Method and system for compressing program code and interpreting compressed program code

A computer system and method for compressing an instruction stream and executing the compressed instruction stream without decompression. The invention utilizes a new pointer instruction, i.e., an “Echo” instruction that is used to replace repeated instructions or sequences of instructions, also referred to as phrases. Replacing subsequent, repeated phrases with the Echo instruction reduces the size of the instruction stream, i.e., compresses the instruction stream. The Echo instruction generally identifies at least one literal instruction appearing before the Echo instruction and further identifies the number of instructions appearing before the Echo instruction to be repeated. No additional delimiters are necessary, e.g., no End Echo instructions are required. Omitting the End Echo instruction allows for overlapping phrases without the need for two Echo instructions. Reducing the number of instructions used significantly increases compression.
Owner:MICROSOFT TECH LICENSING LLC

System and method of converting data formats and communicating between execution units

A method and system including transmitting data in an architectural format between execution units in a multi-type instruction set architecture and converting data received in the architectural format to an internal format and data output in the internal format to the architectural format based on an operation code and a data type of a microinstruction.
Owner:INTEL CORP

Multiple mode power throttle mechanism

InactiveUS6931559B2Controlling the power dissipation of a processorEnergy efficient ICTVolume/mass flow measurementEngineeringThrottle
A processor includes a digital throttle to monitor the activity of various units of the processor's instruction execution pipeline, and to determine a power state for the processor from the monitored activity. One of two or more power control mechanisms is engaged, responsive to the power state of the processor reaching a threshold.
Owner:INTEL CORP

Floating point arithmetic unit including an efficient close data path

An execution unit configured to execute vectored floating point and integer instructions. The execution unit may include an add/subtract pipeline having far and close data paths. The far data path is configured to handle effective addition operations, as well as effective subtraction operations for operands having an absolute exponent difference greater than one. The close data path is configured to handle effective subtraction operations for operands having an absolute exponent difference less than or equal to one. The close data path includes an adder unit configured to generate a first and second output value. The first output value is equal to the first input operand plus an inverted version of the second input operand, while the second output value is equal to the first output value plus one. The two output values are conveyed to a multiplexer unit, which selects one of the output values as a preliminary subtraction result based on a final selection signal received from a selection unit. The selection unit generates the final selection signal from a plurality of preliminary selection signals based on the carry in signal to the most significant bit of the first adder output value. Selection of the first or second output value in the close data path effectuates the round-to-nearest operation.
Owner:ADVANCED SILICON TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products