Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

790results about "Radiation electrical energy" patented technology

Sequential method for depositing a film by modulated ion-induced atomic layer deposition (MII-ALD)

The present invention relates to an enhanced sequential atomic layer deposition (ALD) technique suitable for deposition of barrier layers, adhesion layers, seed layers, low dielectric constant (low-k) films, high dielectric constant (high-k) films, and other conductive, semi-conductive, and non-conductive films. This is accomplished by 1) providing a non-thermal or non-pyrolytic means of triggering the deposition reaction; 2) providing a means of depositing a purer film of higher density at lower temperatures; and, 3) providing a faster and more efficient means of modulating the deposition sequence and hence the overall process rate resulting in an improved deposition method. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
Owner:NOVELLUS SYSTEMS

Method for energy-assisted atomic layer deposition and removal

A method for energy-assisted atomic layer deposition and removal of a dielectric film are provided. In one embodiment a substrate is placed into a reaction chamber and a gaseous precursor is introduced into the reaction chamber. Energy is provide by a pulse of electromagnetic radiation which forms radical species of the gaseous precursor. The radical species react with the surface of the substrate to form a radical terminated surface on the substrate. The reaction chamber is purged and a second gaseous precursor is introduced. A second electromagnetic radiation pulse is initiated and forms second radical species. The second radical species of the second gas react with the surface to form a film on the substrate. Alternately, the gaseous species can be chosen to produce radicals that result in the removal of material from the surface of the substrate.
Owner:HELMS JR AUBREY L +3

Lithographic apparatus and device manufacturing method

In an immersion lithography apparatus, the immersion liquid is supplied from a tank via a flow restrictor. The liquid held in the tank is maintained at a substantially constant height above the flow restrictor to ensure a constant flow of liquid.
Owner:ASML NETHERLANDS BV

Roll to roll nanoimprint lithography

Apparatus and methods for a nano-patterning process to fabricate nanostructures. A roller type mold is used to continuously imprint nanostructures onto a flexible web or a rigid substrate. The process includes a coating and an imprinting module, which rotate the web synchronously. Liquid resist materials are used for imprinting and the patterns are set by thermal or UV curing. The process is used to produce bilayer metal wire-grid polarizers, organic solar cells, and organic light emitting diodes.
Owner:RGT UNIV OF MICHIGAN

Method for Fabricating a Long-Range Ordered Periodic Array of Nano-Features, and Articles Comprising Same

A long range, periodically ordered array of discrete nano-features (10), such as nano-islands, nano-particles, nano-wires, non-tubes, nano-pores, nano-composition-variations, and nano-device-components, are fabricated by propagation of a self-assembling array or nucleation and growth of periodically aligned nano-features. The propagation may be induced by a laterally or circularly moving heat source, a stationary heat source arranged at an edge of the material to be patterned (12), or a series of sequentially activated heaters or electrodes. Advantageously, the long-range periodic array of nano-features (10) may be utilized as a nano-mask or nano-implant master pattern for nano-fabrication of other nano-structures. In addition, the inventive long-range, periodically ordered arrays of nano-features are useful in a variety of nanoscale applications such as addressable memories or logic devices, ultra-high-density magnetic recording media, magnetic sensors, photonic devices, quantum computing devices, quantum luminescent devices, and efficient catalytic devices.
Owner:RGT UNIV OF CALIFORNIA

Method for manufacturing wiring, thin film transistor, light emitting device and liquid crystal display device, and droplet discharge apparatus for forming the same

As a semiconductor device, specifically, a pixel portion included in a semiconductor device is made to have higher precision and higher aperture ratio, it is required to form a smaller wiring in width. In the case of forming a wiring by using an ink-jet method, a dot spreads on a wiring formation surface, and it is difficult to narrow width of a wiring. In the present invention, a photocatalytic substance typified by TiO2 is formed on a wiring formation surface, and a wiring is formed by utilizing photocatalytic activity of the photocatalytic substance. According to the present invention, a narrower wiring, that is, a smaller wiring in width than a diameter of a dot formed by an ink-jet method can be formed.
Owner:SEMICON ENERGY LAB CO LTD

Rear electrode structure for use in photovoltaic device such as CIGS/CIS photovoltaic device and method of making same

A photovoltaic device including a rear electrode which may also function as a rear reflector. In certain example embodiments of this invention, the rear electrode includes a metallic based reflective film that is oxidation graded, so as to be more oxided closer to a rear substrate (e.g., glass substrate) supporting the electrode than at a location further from the rear substrate. In other words, the rear electrode is oxidation graded so as to be less oxided closer to a semiconductor absorber of the photovoltaic device than at a location further from the semiconductor absorber in certain example embodiments. In certain example embodiments, the interior surface of the rear substrate may optionally be textured so that the rear electrode deposited thereon is also textured so as to provide desirable electrical and reflective characteristics. In certain example embodiments, the rear electrode may be of or include Mo and / or MoOx, and may be sputter-deposited using a combination of MoOx and Mo sputtering targets.
Owner:GUARDIAN GLASS LLC

Vacuum processing apparatus and operating method for vacuum processing apparatus

It is an object of the invention to provide a vacuum processing apparatus that enables setting a timing interval between self-cleaning procedures simply and so as to have general-use, enables significantly lengthening this timing interval, and improves the production efficiency. In a plasma CVD apparatus (100) that carries out self-cleaning procedure by feeding a cleaning gas into a film deposition chamber (1) in which film deposition processing is carried out on a substrate (4), the timing interval between self-cleaning procedures is set in a range in which a film deposition operating time ratio (Ps) is converged with respect to an increase in a film deposition process amount, where the film deposition operating time ratio (Ps) is represented by the proportion of a film deposition-related operating time (Tt) in the sum of the film deposition-related operating time (Tt) and a cleaning-related operating time (Tc).
Owner:MITSUBISHI HEAVY IND LTD

Hard graphite-like material bonded by diamond-like framework

The present invention provides a novel class of hard nano-structured materials comprising sp2 bonded graphite-like layers bonded together by sp3 three-dimensional diamond-like frameworks, wherein the whole carbon structure is stabilized with at least two alloying elements: the first alloying element selected from the group consisting of O, H, N, and a combination thereof; and the second alloying element selected from the group consisting of Si, B, Zr, Ti, V, Cr, Be, Hf, Al, Nb, Ta, Mo, W, Mn, Re, Fe, Co, Ni, Mn, Re, Fe, Co, Ni and a combination thereof. Also disclosed, are methods of manufacture of the novel class of materials.
Owner:NANODYNAMICS INC

Thermally controlled fluidic self-assembly

Methods and apparatuses are provided for assembling a structure on a support having a pattern of binding sites. In accordance with the method, a first fluid is provided on the surface of the support with the first fluid being of a type that that increases viscosity when heated, the first fluid having first micro-components suspended therein each adapted to engage the binding sites. The first fluid proximate to selected binding sites is heated to increase the viscosity of the responsive fluid proximate to the selected binding sites so that the first micro-components suspended in the first fluid are inhibited from engaging the selected binding sites.
Owner:EASTMAN KODAK CO

Process for the manufacturing of surface elements with a structured top surface

A process for the manufacturing of a decorative surface element, which element comprises a base layer and a decorative upper surface. A radiation curing lacquer is printed in a predetermined pattern as an uppermost layer on the decorative upper surface. The radiation curing lacquer covers only parts of the decorative upper surface whereby the lacquer is exposed to radiation whereby it cures. A surface structure is hereby achieved.
Owner:UNILIN NORDIC AB

Process for preparation of silver nanoparticles, and the compositions of silver ink containing the same

The present invention relates to a process for preparation of silver complex compound and the compositions of silver ink containing the same. The present invention includes a) preparing silver complex compound with special structure by reacting silver compound with at least one or two mixtures selected from ammonium carbamate compound, ammonium carbonate compound or ammonium bicarbonate compound and b) preparing silver nano particles by reacting the silver complex compound with reducer or reducing or pyrolyzing the silver complex compound by applying heat thereto. The preparing method according to the present invention can prepare the silver nano practical with various shapes through a simple preparation process, improve the selectivity of the size of the silver complex compound, fire the silver complex compound even when it is fired at a low temperature of 150° C. or less during a short time, provide the ink compositions capable of forming the coating or the fine pattern showing the high conductivity while facilitating the thickness control of the coating, and provide the ink compositions capable of being applied to the reflective film material, the electromagnetic wave shield, and the antimicrobial agent, etc.
Owner:INKTEC CO LTD

Lubricious biopolymeric network compositions and methods of making same

The invention provides a network composition comprising a plurality of associated saccharide chains wherein a chain comprises at least one saccharide component; and at least one first monomer, at least one second monomer, or combinations of both; wherein the first monomer is linked to the saccharide component by ester linkages; ether linkages; amide linkages; ketone linkages; or combinations thereof; wherein the second monomer is linked to the saccharide component by ester linkages; ether linkages; amide linkages; ketone linkages; urea linkages; carbamate linkages, aluminum oxide linkages; siloxane linkages; or combinations thereof; wherein first monomers are linked to each other by ester linkages; ether linkages; amide linkages; ketone linkages; or combinations thereof; wherein the first monomer is linked to the second monomer by ester linkages; ether linkages; amide linkages; ketone linkages; urea linkages; carbamate linkages; aluminum oxide linkages; siloxane linkages or combinations thereof; wherein the second monomers are linked to each other by ester linkages; ether linkages; amide linkages; ketone linkages; polyvinyl linkages, polyolefin linkages, urea linkages; carbamate linkages, aluminum oxide linkages, siloxane linkages or combinations thereof; and wherein the saccharide components are linked to each other by ester linkages; ether linkages; amide linkages; ketone linkages; or combinations thereof; wherein the network is capable of adhering to a substrate.
Owner:HYDROMER INC

Microfiber supported nanofiber membrane

A nanofiber membrane is formed on a microfiber membrane. The nanofiber membrane may be electro sprayed directly onto the microfiber membrane and becomes integrated with the microfiber membrane to form a filter. The microfiber membrane provides structural integrity to for the nanofiber membrane, and an additional microfiber membrane may be added to sandwich the nanofiber membrane.
Owner:CORNELL RES FOUNDATION INC

Thermionic generator

A method for building a thermionic converter comprises providing an electrode and creating a central depression of substantially uniform depth on a face of the electrode. A surface of the central depression is coated with a layer comprising a thermionic material. A second electrode comprising a face is also provided, wherein the face of the second electrode comprises a central depression of substantially uniform depth, wherein the central depression is coated with a layer comprising a thermionic material.
Owner:BOREALIS TECH LTD

Plasma enhanced atomic layer deposition system and method

A method for depositing a film on a substrate using a plasma enhanced atomic layer deposition (PEALD) process includes disposing the substrate in a process chamber configured to facilitate the PEALD process, wherein the process chamber includes a substrate zone proximate the substrate and a peripheral zone proximate to a peripheral edge of the substrate. Also included is introducing a first process material within the process chamber, introducing a second process material within the process chamber and coupling electromagnetic power to the process chamber during introduction of the second process material in order to generate a plasma that facilitates a reduction reaction between the first and the second process materials at a surface of the substrate. Electromagnetic power is coupled to a process electrode to generate a substrate zone plasma in the substrate zone that ionizes contaminants substantially in a region of the substrate, and electromagnetic power to a peripheral electrode to generate a peripheral zone plasma in the peripheral zone having a characteristic different from the substrate zone plasma such that ionized contaminants are transported from the substrate zone to the peripheral zone in the process chamber.
Owner:TOKYO ELECTRON LTD

Coating methods, systems, and related articles

Coated articles and methods and systems for coating the articles are described herein. The methods and systems described herein include, but are not limited to, steps for actively or passively controlling the temperature during the coating process, steps for providing intimate contact between the substrate and the support holding the substrate in order to maximize energy transfer, and / or steps for preparing gradient coatings. Methods for depositing high molecular weight polymeric coatings, end-capped polymer coatings, coatings covalently bonded to the substrate or one another, metallic coatings, and / or multilayer coatings are also disclosed. Deposition of coatings can be accelerated and / or improved by applying an electrical potential and / or through the use of inert gases.
Owner:GVD CORP

Reliant Thermal Barrier Coating System and Related Methods and Apparatus of Making the Same

A method and apparatus for forming a thermal barrier coating system (90) in communication with at least a portion of at least one substrate (92). The method includes: depositing a first bond coat (94) on at least a portion of at least one substrate (92); depositing a first thermal barrier coat (96) disposed on the bond coat (94); whereby the deposition occurs in one or more chambers to form the thermal barrier coating system (90); and wherein the deposition of the first bond coat (94) (or subsequent bond coats) and the deposition of the first thermal barrier coat (96) (or subsequent thermal barrier coats) is performed without out-of-chamber handling of the thermal barrier coating system (90).
Owner:UNIV OF VIRGINIA ALUMNI PATENTS FOUND

Layered metal foil semiconductor power device

The present invention is a power cell for directly converting ionizing radiation into electrical energy. The invented isotopic electric converter provides an electrical power source that includes an electronegative material layered in a semiconductor, to form a first region that has a high density of conduction electrons, and an electropositive material also layered in the semiconductor material to form a second region with a high density of holes. Said N-layers region and P-layers region are separated by a neutral zone of semiconductor material doped with a radioactive isotope, such as, but not limited to, tritium. No junction is formed between the N and P layers regions. Rather, the potential gradient across the neutral zone is provided by the difference between the work functions of the electronegative and electropositive electrodes. Electrical contacts are affixed to the respective regions of the first and second type conductivity which become the anode and cathode of the cell, respectively. Beta particles emitted by the tritium generate electron-hole pairs within the neutral zone, which are swept away by the potential gradient between the first and second regions, thereby producing an electric current.
Owner:BROWN PAUL M

Alignment of paste-like ink having magnetic particles therein, and the printing of optical effects

A method and apparatus is provided for printing using paste like inks such as those used in intaglio printing, wherein the inks include specialty flakes such as thin film optically variable flakes, or diffractive flakes. The invention discloses an apparatus having an energy source such as a heat source for temporarily lessening the viscosity of the ink during alignment of the flakes within the ink.
Owner:VIAVI SOLUTIONS INC

Tunneling-effect energy converters

Tunneling-effect converters of thermal energy to electricity with an emitter and a collector separated from each other by a distance that is comparable to atomic dimensions and where tunneling effect plays an important role in the charge movement from the emitter to the collector across the gap separating such emitter and collector. At least one of the emitter and collector structures includes a flexible structure. Tunneling-effect converters include devices that convert thermal energy to electrical energy and devices that provide refrigeration when electric power is supplied to such devices.
Owner:MICROPOWER GLOBAL

Minisize nuclear battery

The invention discloses a minitype nuclear battery, which mainly solves the problem that the nuclear battery manufacturing is easier than the SiC technology realization. A low doping epitaxial layer (2) and an ohmic contact electrode (3) are respectively arranged at the upper part and the lower part of an N-type high doping SiC substrate (1), wherein, a circular schottky contact layer (4) is deposited on the upper surface of the low doping epitaxial layer (2), and a SiO2 passivating layer (5) and a bonding layer (7) are arranged on the circumference at the outer edge of the schottky contact layer. The schottky contact layer (4) and a schottky contact electrode (6) are formed by adopting an identical technology, that is, a schottky contact hole is etched by adopting wet process in the center position of the SiO2 passivating layer (5), and Ni, Pt or Au with the thickness being 5 to 20 nm deposited on the SiO2 passivating layer on the hole or at the periphery of the hole, and the schottky contact layer (4) and the schottky contact electrode (6) are respectively formed after the SiO2 passivating layer is peeled off. The minitype nuclear battery has the advantages of simple technology and high conversion efficiency, and is applicable in directly converting the nuclear energy radiated by isotopes into the electric energy.
Owner:XIDIAN UNIV

Monoparticulate-film etching mask and process for producing the same, process for producing fine structure with the monoparticulate-film etching mask, and fine structure obtained by the production process

A micro structure which is preferred as an original plate of an antireflection, a mold of nano imprint or injection molding is obtained by a single particle film etching mask on which each particle is precisely aligned and closest packed in two dimensions. A single particle film etching mask is produced by a drip step wherein a dispersed liquid in which particles dispersed in a solvent are dripped onto a liquid surface of a water tank, a single particle film formation step in which a single particle film which consists of the particles by volatizing a solvent is formed, and a transfer step in which the single particle film is transferred to a substrate. The single particle film etching mask on which particles are closest packed in two dimensions, has a misalignment D(%) of an array of the particles that is defined by D(%)=|B−A|×100 / A being less than or equal to 10%. However, A is the average diameter of the particles, and B is the average pitch between the particles in the single particle film.
Owner:OJI PAPER CO LTD

Coated article including broadband and omnidirectional Anti-reflective transparent coating, and/or method of making the same

Certain example embodiments involve the production of a broadband and at least quasi-omnidirectional antireflective (AR) coating. The concept underlying certain example embodiments is based on well-established and applied mathematical tools, and involves the creation of nanostructures that facilitate these and / or other features. Finite element (FDTD) simulations are performed to validate the concept and develop design guidelines for the nanostructures, e.g., with a view towards improving visible transmission. Certain example embodiments provide such structures on or in glass, and other materials (e.g., semiconductor materials that are used to convert light or EM waves to electricity) alternatively or additionally may have such structures formed directly or indirectly thereon.
Owner:GUARDIAN GLASS LLC

In-core instrument thimble assembly

A self-powered integral in-core instrument thimble assembly for monitoring the temperature and radiation levels surrounding a nuclear fuel assembly, that transmits output signals wirelessly to a remote location. The in-core instrument thimble assembly is activated by a short exposure within a reactor core and remains active after the fuel assembly is removed from the reactor core to continuously provide a remote monitoring capability for the fuel assembly as it is transported or stored at a remote location, without an external power source.
Owner:WESTINGHOUSE ELECTRIC CORP

Deposition device

It is an object of the present invention to provide a deposition device that can selectively form a thin film without using a shadow mask with respect to a substrate having a large size. In the deposition device, an evaporation source is provided with a cylinder cell, a heater for heating a lower part of the cylinder cell, and a heater for heating an upper part of the cylinder cell. A hot plate can control a temperature by a heater provided inside thereof. The hot plate heats an evaporation material supplied into the cylinder cell from a material supply portion that is connected to the cylinder cell, and vaporizes the evaporation material by evaporation or sublimation. A rotating mechanism for rotating the hot plate in the cylinder cell may be provided to achieve uniformity of a temperature. A heater for heating the material supply potion may be provided to raise a temperature of the evaporation material supplied into the cylinder cell. By such an evaporation source, deposition can be uniformly and continuously performed with respect to a substrate having a large size.
Owner:SEMICON ENERGY LAB CO LTD

Micro-Scale Power Source

A micro-scale power source and method includes a semiconductor structure having an n-type semiconductor region, a p-type semiconductor region and a p-n junction. A radioisotope provides energy to the p-n junction resulting in electron-hole pairs being formed in the n-type semiconductor region and p-type semiconductor region, which causes electrical current to pass through p-n junction and produce electrical power.
Owner:UNIVERSITY OF MISSOURI
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products