Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

536 results about "Wavelength selectivity" patented technology

Graphene transistor based on metamaterial structure, optical sensor based on metamaterial structure, and application of graphene transistor

Disclosed are a graphene transistor based on a metamaterial structure, an optical sensor based on a metamaterial structure, and application of the graphene transistor. The graphene transistor sequentially comprises a liner, a grid metal layer, a grid medium layer, a grapheme layer and a source and drain metal layer from bottom to top. At least local area of the source and drain metal layer is provided with a periodicity micro-nano structure. The periodicity micro-nano structure, the grid metal layer and the grid medium layer match to form the metamaterial structure with the feature of complete absorption. By changing refractive index, thickness and the like of the periodicity micro-nano structure and the grid medium layer material, optical absorption frequency range of the metamaterial structure can be adjusted. Due to the feature of perfect wavelength selectivity absorption, higher flexibility and narrow-band response of the metamaterial structure, the graphene transistor can work under visible light to infrared even longer wave bands by selecting different metamaterial structures. By integrating optical sensor working in different wave bands, image sensors, spectrum detecting analyzing device and the like which can work in ultra-wide bands can be formed.
Owner:SUZHOU INST OF NANO TECH & NANO BIONICS CHINESE ACEDEMY OF SCI

Cascading optical multiplexing device

An optical multiplexing device is provided comprising multiple wavelength division multiplexers cascaded together. A first one of the wavelength division multiplexers has a common port and multiple optical ports which are optically coupled to the common port. The common port may be optically coupled to a trunk line of a system employing wavelength division multiplexing, for example, a fiber-optic telecommunication system employing 4, 8, 16 or other number of multiplexed channels. The optical ports include multiple channel ports, each of which is transparent to a corresponding wavelength sub-range and reflective of other wavelengths. The second wavelength division multiplexer has a common port optically coupled to one of the optical ports of the first wavelength division multiplexer. The second wavelength division multiplexer also has multiple optical ports which are optically coupled to its common port and include multiple wavelength-selective channel ports. A waveguide, such as a fiber-optic line, can optically connect the common port of the second wavelength division multiplexer to an optical port of the first wavelength division multiplexer. The cascaded WDMs each may be optically coupled to the output of a passive coupler and a housing may be provided defining an enclosed space in which the optical multiplexing device is mounted. Optionally, additional WDMs may be cascaded with the first two WDMs in a parallel or branched formation, an in-line formation or some combination. Preferably, the channels are interleaved, such that they are removed from the multiplexed signal in certain non-sequential order. The optical multiplexing device also may employ compound interleaving wherein adjacent channels are multiplexed by different ones of the cascaded WDMs. The optical multiplexing devices can operate to add signals, remove signals or a combination of both.
Owner:CORNING OCA CORPORATION

Spectral plane method and apparatus for wavelength-selective optical switching

We describe a variable bandwidth tunable optical spectral filtering device and associated method for selectively directing a portion of a wavelength multiplexed input signal, entering through one or more optical fibers, into one or more output signals provided to one or more optical fibers and/or electronic outputs. The optical filtering is accomplished using free-space diffractive wavelength de-multiplexing optics combined with a fixed (permanent) patterned structure located in the spectrally dispersed image plane. The structure can direct a selected spectral portion of the optical signal to one or more separate outputs, such as an optical fiber or power detector. A single active element in the optical path is used to spatially shift, or steer, the entire input spectrum at the dispersed spectral image plane, to control the portion of the input spectrum illuminating specific features on the permanent patterned structure. In one preferred embodiment, a device with a fixed selective area triangular shaped tilted reflective facet on a flat reflective surface is constructed such that the light reflected off the flat reflective surface and off the triangular reflective facet are selectively multiplexed back and directed to different output fiber ports. Inputs at different angles of incidence on the reflective structures may be deflected by the same structures to different output port fiber ports. A reconfigurable variable-bandwidth tunable optical add/drop multiplexing device is constructed using such a filtering device and an application of such an add/drop multiplexing in a optical transport network is demonstrated.
Owner:WILSON GORDON +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products