Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

620 results about "Polymer nanoparticle" patented technology

Combined use of liquid polymer and polymeric nanoparticles for rubber applications

The present invention provides a rubber composition comprising (a) a liquid polymer, (b) polymer nanoparticles, and (c) a rubbery matrix. The composition may comprise less or even no aromatic oil. Rubber articles manufactured from such composition, such as tires and power belts, have gained improved reinforcement and controllable hysteresis properties.
Owner:BRIDGESTONE CORP

Hairy polymeric nanoparticles

This invention discloses a process for synthesizing a hairy polymer particle which comprises the steps of (1) polymerizing a vinyl aromatic monomer by emulsion polymerization in an aqueous medium to produce core particles, (2) recovering the core particles from the aqueous medium, (3) dispersing the core particles in an organic solvent, (4) adding an organo-lithium compound to the dried core particles in the organic solvent to produce the hairless core initiator, and (5) utilizing the hairless core initiator to initiate the anionic polymerization of a conjugated diolefin monomer in an organic solvent to produce a solution of the hairy polymer particles. The hairy polymer nanoparticles can then be recovered from the organic solvent. These hairy polymer particles are comprised of (1) a core which is comprised of a polymer of a vinyl aromatic monomer and (2) hairs which are polymer chains of a conjugated diolefin monomer, wherein the hairs are covalently bonded to the core. The core is typically spherical in shape, has a diameter of less than 1000 nm, and is comprised of a crosslinked polymer of a vinyl aromatic monomer. The hairy polymer particles of this invention are useful as fillers in rubber compositions used in making articles of manufacture, such as tires, hoses, power transmission belts, windshield wiper blades, and the like.
Owner:THE GOODYEAR TIRE & RUBBER CO

Vulcanizable nanoparticles having a core with a high glass transition temperature

Provided is a polymer nanoparticle comprising a core and a vulcanizable shell, wherein the core has a glass transition temperature (Tg) of at least about 150° C. Also provided is a method of preparing polymer nanoparticles with a core and a vulcanizable shell, comprising (a) in a liquid hydrocarbon medium, polymerizing conjugated diene monomers to produce a poly(conjugated diene) block and (b) copolymerizing the poly(conjugated diene) block with a mixture of mono-vinyl aromatic monomers and multiple-vinyl aromatic monomers to produce an aromatic block, wherein the core has a Tg of at least about 150° C. Also provided is a composition comprising (a) a rubber matrix; and (b) a polymer nanoparticle including a core and a vulcanizable shell; wherein the Tg of the core is at least about 150° C.
Owner:BRIDGESTONE CORP

Hairy polymeric nanoparticles

This invention discloses a process for synthesizing a hairy polymer particle which comprises the steps of (1) polymerizing a vinyl aromatic monomer by emulsion polymerization in an aqueous medium to produce core particles, (2) recovering the core particles from the aqueous medium, (3) dispersing the core particles in an organic solvent, (4) adding an organo-lithium compound to the dried core particles in the organic solvent to produce the hairless core initiator, and (5) utilizing the hairless core initiator to initiate the anionic polymerization of a conjugated diolefin monomer in an organic solvent to produce a solution of the hairy polymer particles. The hairy polymer nanoparticles can then be recovered from the organic solvent. These hairy polymer particles are comprised of (1) a core which is comprised of a polymer of a vinyl aromatic monomer and (2) hairs which are polymer chains of a conjugated diolefin monomer, wherein the hairs are covalently bonded to the core. The core is typically spherical in shape, has a diameter of less than 1000 nm, and is comprised of a crosslinked polymer of a vinyl aromatic monomer. The hairy polymer particles of this invention are useful as fillers in rubber compositions used in making articles of manufacture, such as tires, hoses, power transmission belts, windshield wiper blades, and the like.
Owner:THE GOODYEAR TIRE & RUBBER CO

Polyvinyl butyral transparent film and preparation method thereof

The invention belongs to the field of polymer / nanoparticle composite materials, and relates to an infrared thermal reflection and anti-ultraviolet polyvinyl butyral (PVB) transparent film for laminated safety glass and a preparation method thereof. According to the method, nano-indium stannum oxide (ATO) is selected as functional particles, is subjected to double processing through a coupling agent and a dispersing agent and is poured into a mold to be formed and compounded after being directly and uniformly mixed with purchased or self-made polyvinyl butyral, plasticizer, antioxidant and filming agent by means of ultrasonic wave to prepare a heat-insulating PVB nano composite film. The nano-ATO particles are subjected to the double processing and the special ultrasonic dispersion process, so that the problem of agglomeration of the ATO is effectively improved; and the prepared PVB nano composite film has superior mechanical property and higher infrared reflectivity and visible light transmittance, and can be directly used for processing and producing heat-insulating, sound-insulating, anti-ultraviolet, transparent and impact-resistant multi-functional safety glass.
Owner:CHANGZHOU XIAOGUO INFORMATION SERVICES

Self-assembly method of inorganic nano particle hybridization organic membrane

The invention relates to a self-assembly method of inorganic nano particle hybridization organic membrane. The method comprises steps of: respectively dissolving polycation and polyanion in a dissolvent, preparing to form a membrane casting solution, standing and defoaming; adding inorganic nano particle into a polyanion solution to prepare a polymer nano particle solution; soaking or dynamically filtering polyanion nano particle solution or polycation solution on the surface of a substrate or basal membrane for 10 to 60 minutes to form a thin membrane layer. The substrate or the basal membrane is soaked or dynamically filtered in the polycation solution or polyanion nano particle solution for 10 to 60 minutes; the polyanion nano particle solution reacts with the polycation to form the thin membrane layer; the substrate or the basal membrane is soaked in deionized water, and the membrane surface is rinsed and dried. When the polycation or the polyanion nano particle solution is filtered on the basal membrane, the transmembrane differential pressure thereof is 0.01 to 0.3MPa or minus 0.02 to minus 0.09MPa. The membrane forming method is simple; the thin membrane prepared on the substrate is compact and uniform; the membrane formed on the basal membrane has excellent penetration and vaporization separating property and mechanical strength.
Owner:BEIJING UNIV OF TECH

Colloidal nanoscale carriers for active hydrophilic substances and method for producing same

The invention "colloidal nanoscale carriers for active hydrophilic substances and method for producing same" pertains to the field of medical, odontological or hygiene preparations, and is characterized by structures formed by hydrophilic polymers that contain active hydrophilic substances coated with a non-hydrophilic phase and surfactants with affinity for the components, forming an invert emulsion that allows the incorporation and controlled delivery of active hydrophilic substances, conferring properties such as protection against degradation processes, improvement of compatibility with the other components of the formulation in the final product, increase in the availability and/or bioavailability of the active substance in the medium of interest (including improvements in permeation processes in biological materials, reduction of the exposure and volatilization of the active substance in the medium) and controlled release of the active substance(s). The nanoscale carrier obtained by this method, called colloidal nanoscale carrier (NC), can be used in various fields, such as the pharmaceutical field (including dermatology), cosmetics, personal hygiene products, veterinary medicine, agrochemicals and fertilizers, the food industry and the like. The invention proposes a kinetically stable system with an effective nanoscale structure that consists of nanoscale carriers formed by polymers emulsified in a non-aqueous medium in the presence of a surfactant with affinity for the two phases (the dispersion medium and the encapsulating agent). This system is obtained by nanoemulsification of an aqueous phase of hydrophilic polymers emulsified in a non-hydrophilic (lipophilic or silophilic) phase that contains the surfactants, and is characterized by the implementation of two concepts that encompass the generation of an invert nanoscale emulsion and of polymer nanoparticles. The formulation has the novel technical effect of providing a polymer excipient with a nanoscale structure for delivering hydrophilic molecules suspended in a non-hydrophilic phase, which allows controlling the size of the nanoscale particles and modulating colloidal stability by means of process parameters.
Owner:INST DE PESQUISAS TECNOLOGICAS DO ESTADO DE SAO PAULO SA IPT +2

Composition for forming low dielectric thin film comprising polymer nanoparticles and method of preparing low dielectric thin film using the same

A composition for forming a low dielectric thin film, which includes a silane polymer, polymer nanoparticles, a porogen and an organic solvent, and a method of preparing a low dielectric thin film using the same. The low dielectric thin film prepared using the composition of this disclosure has a low dielectric constant and excellent mechanical strength. As well, the polymer nanoparticles in the low dielectric thin film have a uniform diameter and are soft, and thus are advantageously applied to a chemical-mechanical polishing process.
Owner:SAMSUNG CORNING PRECISION MATERIALS CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products