Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

706 results about "Non functional" patented technology

Artificial spinal joints and method of use

An artificial spinal joint, consisting of a flexible or rigid member or a pair of moveably-joined, flexible or rigid segments, is formed into a spring-like shape, whose distal ends have feet with slots through which screws can be inserted to attach the artificial joint to vertebra whose facets (joints) are non-functional. The artificial spinal joint is able to prevent subluxation of the spine, while retaining the mobility of the spine and permitting angular deflection of the vertebra above and below a non-functional spinal joint. A jig is used to position tools and make passageways for screws to attach the artificial spinal joint to the vertebra or its pedicles or facets in a minimally invasive procedure. The rigid members or segments are bio-compatible and may be made of titanium, a titanium alloy, tantalum, medical grade stainless steel or carbon fibers in a matrix of a rigid, durable plastic. The flexible members or segments may be made of spring steel coated with a durable, bio-compatible material, small diameter carbon fibers in a flexible, durable plastic matrix, or a single shape or dual shape, superelastic memory metal. The feet, made of any of the rigid or flexible materials described above, may also be moveably attached to the proximal ends of the members or segments. Having the feet moveably attached to the segments facilitates insertion of the artificial spinal joint into the body by folding the feet parallel to the axis of the segments during insertion, and then unfolding the feet for attachment to the vertebra or its pedicles or facets. The artificial spinal joint may be inserted and attached to vertebra whose facets are non-functional in minimally invasive, moderately invasive or conventional surgical procedures.
Owner:TRIMEDYNE

Tricyclo-dna antisense oligonucleotides, compositions, and methods for the treatment of disease

InactiveUS20120149756A1Find utilityFacilitates inclusionOrganic active ingredientsSplicing alterationDiseasePre mrna processing
Provided are tricyclo-DNA (tc-DNA) AON and methods employing tc-DNA AON for modifying splicing events that occur during pre-mRNA processing. Tricyclo-DNA (tc-DNA) AON are described that may be used to facilitate exon skipping or to mask intronic silencer sequences and / or terminal stem-loop sequences during pre-mRNA processing and to target RNase-mediated destruction of processed mRNA. Tc-DNA AON described herein may be used in methods for the treatment of Duchenne Muscular Dystrophy by skipping a mutated exon 23 or exon 51 within a dystrophin gene to restore functionality of a dystrophin protein; in methods for the treatment of Spinal Muscular Atrophy by masking an intronic silencing sequence and / or a terminal stem-loop sequence within an SMN2 gene to yield modified functional SMN2 protein, including an amino acid sequence encoded by exon 7, which is capable of at least partially complementing a non-functional SMN1 protein; and in methods for the treatment of Steinert's Myotonic Dystrophy by targeting the destruction of a mutated DM1 mRNA comprising 3′-terminal CUG repeats.
Owner:INST NAT DE LA SANTE & DE LA RECHERCHE MEDICALE (INSERM) +4

Fail-over control in a computer system having redundant service processors

A system and method for determining an active service processor from two or more redundant service processors in the system. The system typically includes two management modules and at least one managed subsystem such as a server blade. Each management module includes a service processor and control logic. The control logic is configured to receive various status signals from the service processor and to generate a control signal based thereon. The control signal is provided, via an interconnect plane, to determination logic on each managed subsystem. The determination logic receives a control signal from each management module and generates a switch signal based on the state of the control signals. The switch signal controls switching logic configured to receive bus signals from the service processors on each management module. Based on the control signal, one of the service processor bus signals is provided to managed instrumentation on the managed subsystem. The management module control logic is generally configured to maintain the control signal in its current state if the active processor is determined to be functional. The control logic is further configured to alter the control signal state if the active service processor is determined to be non-functional. A transition in the control signal typically generates a fail-over event that causes the switching logic on the managed subsystems to switch from the previously active service processor to the previously inactive or standby service processor as the source of service processor signals.
Owner:IBM CORP

System and Method for Service Virtualization in a Service Governance Framework

A service governance framework may provide a platform for development and hosting of virtual service offerings and generation of interfaces to operations thereof, dependent on configurable functional parameters and / or non-functional aspects associated therewith. Virtualization techniques may be applied at an endpoint level, binding level, message level, operation level, and / or service level at design time, and supported with corresponding changes at runtime. Users having various roles may access the framework to specify operations of services provided by computing service sources to include in a virtual service offering, specify configuration parameter values associated with them, and / or specify a contract of non-functional aspect clauses for the virtual service offering. The framework may produce the interface by modifying an interface provided by the computing service sources (e.g., a WSDL). The framework may include aspect enforcement methods and an underlying common information model, and may support versioning and life cycles of service offerings and / or components.
Owner:SUN MICROSYSTEMS INC

Compositions for injectable ophthalmic lenses

InactiveUS20060135477A1Improved control of injectionEasy to controlBiocideSilicon organic compoundsIntraocular lensCapsular bag
Injectable ophthalmic compositions suitable for forming an intraocular lens in the capsular bag of an eye comprise linear non-functional polysiloxane, linear terminally functional polysiloxane, and at least one crosslinker. The linear terminally functional polysiloxane may comprise a mixture of linear terminally monofunctional polysiloxane and linear terminally di-functional polysiloxane.
Owner:AMO GRONINGEN
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products