Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1433 results about "Failover" patented technology

In computing and related technologies such as networking, failover is switching to a redundant or standby computer server, system, hardware component or network upon the failure or abnormal termination of the previously active application, server, system, hardware component, or network. Failover and switchover are essentially the same operation, except that failover is automatic and usually operates without warning, while switchover requires human intervention.

System and method for a reserved memory area shared by all redundant storage controllers

A fibre channel storage area network (SAN) provides virtualized storage space for a number of servers to a number of virtual disks implemented on various virtual redundant array of inexpensive disks (RAID) devices striped across a plurality of physical disk drives. The SAN includes plural controllers and communication paths to allow for fail-safe and fail-over operation. The plural controllers can be loosely-coupled to provide n-way redundancy and have more than one independent channel for communicating with one another. In the event of a failure involving a controller or controller interface, the virtual disks that are accessed via the affected interfaces are re-mapped to another interface in order to continue to provide high data availability. In particular, a common memory storage device is connected to the back-ends of every controller to provide a storage area. In this manner, the common memory storage device can be accessed via operations similar to those a controller already uses to presently access the physical disks which are connected to the back-end of the controllers.
Owner:VSIP HLDG LLC

System and method for network traffic management and load balancing

A method for providing load balancing and failover among a set of computing nodes running a network accessible computer service includes providing a computer service that is hosted at one or more servers comprised in a set of computing nodes and is accessible to clients via a first network. Providing a second network including a plurality of traffic processing nodes and load balancing means. The load balancing means is configured to provide load balancing among the set of computing nodes running the computer service. Providing means for redirecting network traffic comprising client requests to access the computer service from the first network to the second network. Providing means for selecting a traffic processing node of the second network for receiving the redirected network traffic comprising the client requests to access the computer service and redirecting the network traffic to the traffic processing node via the means for redirecting network traffic. For every client request for access to the computer service, determining an optimal computing node among the set of computing nodes running the computer service by the traffic processing node via the load balancing means, and then routing the client request to the optimal computing node by the traffic processing node via the second network.
Owner:YOTTAA

Methods and systems for hitless switch management module failover and upgrade

Methods and systems for hitless switch management module failover and upgrade are disclosed. According to one method, a master switch management module participates in network protocols and performs packet forwarding operations. The master switch management module distributes protocol state and packet forwarding information to the slave switch management module. The slave switch management module continuously monitors the operational state of the master switch management module. In response to detecting failure of the master switch management module or a forced failover initiated by the user interface on the master switch management module, the slave switch management module begins network protocol operation in the master mode in a state where the master switch management module last operated correctly.
Owner:EXTREME NETWORKS INC

Using alternate routes for fail-over in a communication network

Using alternate routes for fail-over in a communication network involves maintaining a preferred route and an alternate route in a routing table and routing protocol messages according to the alternate route when the preferred route is unavailable. A node obtains multiple routes for a destination, prioritizes the routes, and installs multiple routes in the routing table, including at least the preferred route and the alternate route. When the node receives a protocol message, the node searches the routing table for a highest priority route that is available for routing the protocol message, and routes the protocol message according to the highest priority route that is available for routing the protocol message. When a route becomes unavailable, the node updates the routing table to indicate that the route is unavailable, and may compute new routes and / or re-prioritize existing routes.
Owner:RPX CLEARINGHOUSE

Fast primary cluster recovery

A cluster recovery process is implemented across a set of distributed archives, where each individual archive is a storage cluster of preferably symmetric nodes. Each node of a cluster typically executes an instance of an application that provides object-based storage of fixed content data and associated metadata. According to the storage method, an association or “link” between a first cluster and a second cluster is first established to facilitate replication. The first cluster is sometimes referred to as a “primary” whereas the “second” cluster is sometimes referred to as a “replica.” Once the link is made, the first cluster's fixed content data and metadata are then replicated from the first cluster to the second cluster, preferably in a continuous manner. Upon a failure of the first cluster, however, a failover operation occurs, and clients of the first cluster are redirected to the second cluster. Upon repair or replacement of the first cluster (a “restore”), the repaired or replaced first cluster resumes authority for servicing the clients of the first cluster. This restore operation preferably occurs in two stages: a “fast recovery” stage that involves preferably “bulk” transfer of the first cluster metadata, following by a “fail back” stage that involves the transfer of the fixed content data. Upon receipt of the metadata from the second cluster, the repaired or replaced first cluster resumes authority for the clients irrespective of whether the fail back stage has completed or even begun.
Owner:HITACHI VANTARA LLC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products