Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

3702 results about "Indium tin oxide" patented technology

Indium tin oxide (ITO) is a ternary composition of indium, tin and oxygen in varying proportions. Depending on the oxygen content, it can either be described as a ceramic or alloy. Indium tin oxide is typically encountered as an oxygen-saturated composition with a formulation of 74% In, 18% O₂, and 8% Sn by weight. Oxygen-saturated compositions are so typical, that unsaturated compositions are termed oxygen-deficient ITO. It is transparent and colorless in thin layers, while in bulk form it is yellowish to grey. In the infrared region of the spectrum it acts as a metal-like mirror.

Optical-interference type display panel and method for making the same

An optical-interference type display panel and a method for making the same are disclosed, wherein the display panel has a substrate on which multiple first conductive optical film stacks, supporting layers and multiple second conductive optical film stacks are formed. The substrate further has a plurality of connecting pads consisting of a transparent conductive film of the first conductive optical film stacks. Since the transparent conductive film is made of indium tin oxide, these connecting pads have the excellent anti-oxidation ability at their surface.
Owner:SNAPTRACK

Semiconductor devices

In an active matrix liquid crystal display (LCD) device, a conductor line interconnecting a drain of each thin-film transistor and a corresponding pixel electrode constructed with indium tin oxide (ITO) is formed in a three-layer structure in which an aluminum film is sandwiched between a pair of titanium films. This construction prevents poor contact and deterioration of reliability because electrical contact is established between one titanium film and semiconductor and between the other titanium film and ITO. The aluminum film has low resistance which is essential for ensuring high performance especially in large-screen LCDs.
Owner:SEMICON ENERGY LAB CO LTD

Light emiting diodes with current spreading layer

A light-emitting diode (LED) for both AlGaInP- and GaN-based materials needs a good transparent current spreading layer to disseminate electrons or holes from the electrode to the active layer. The present invention utilizes a conductive and transparent ITO (Indium Tin Oxide) thin film with an ultra-thin (to minimize the absorption) composite metallic layer to serve as a good ohmic contact and current spreading layer. The present invention avoids the Schottky contact due to direct deposition of ITO on the semiconductor. For AlGaInP materials, a thick GaP current spreading layer is omitted by the present invention. For GaN-based LEDs with the present invention, semi-transparent Ni / Au contact layer is avoided. Therefore, the light extraction of LED can be dramatically improved by the present invention. Holes may be etched into the semiconductor cladding layer forming a Photonic Band Gap structure to improve LED light extraction.
Owner:DICON FIBEROPTICS

Photovoltaic structure with a conductive nanowire array electrode

A photovoltaic (PV) structure is provided, along with a method for forming a PV structure with a conductive nanowire array electrode. The method comprises: forming a bottom electrode with conductive nanowires; forming a first semiconductor layer of a first dopant type (i.e., n-type) overlying the nanowires; forming a second semiconductor layer of a second dopant type, opposite of the first dopant type (i.e., p-type), overlying the first semiconductor layer; and, forming a top electrode overlying the second semiconductor layer. The first and second semiconductor layers can be a material such as a conductive polymer, a conjugated polymer with a fullerene derivative, and inorganic materials such as CdSe, CdS, Titania, or ZnO. The conductive nanowires can be a material such as IrO2, In2O3, SnO2, or indium tin oxide (ITO).
Owner:SHARP KK

Semitransparent optical detector including a polycrystalline layer and method of making

Materials suitable for fabricating optical monitors include amorphous, polycrystalline and microcrystalline materials. Semitransparent photodetector materials may be based on silicon or silicon and germanium alloys. Conductors for connecting to and contacting the photodetector may be made from various transparent oxides, including zinc oxide, tin oxide and indium tin oxide. Optical monitor structures based on PIN diodes take advantage of the materials disclosed. Various contact, lineout, substrate and interconnect structures optimize the monitors for integration with various light sources, including vertical cavity surface emitting laser (VCSEL) arrays. Complete integrated structures include a light source, optical monitor and either a package or waveguide into which light is directed.
Owner:II VI DELAWARE INC +1

Steady state surface mode device for stereoscopic projection

A modulator and system used to display motion pictures is provided. The design comprises a sheet polarizer and a SMD electro-optical modulator configured to operate in a steady state (non-switching) mode. The modulator is formed from two substantially parallel relatively clear plates, such as glass, two coatings of a transparent conductor, such as indium tin oxide, located between the two substantially parallel relatively clear plates, two polyamide layers located between the two coatings of the transparent conductor, and a film of liquid crystal material located between the two polyamide layers.
Owner:REAID INC

Mass production of pristine nano graphene materials

The present invention provides a method of producing pristine or non-oxidized nano graphene platelets (NGPs) that are highly conductive. The method comprises: (a) providing a pristine graphitic material comprising at least a graphite crystallite having at least a graphene plane and an edge surface; (b) dispersing multiple particles of the pristine graphitic material in a liquid medium containing therein no surfactant to produce a suspension, wherein the multiple particles in the liquid have a concentration greater than 0.1 mg / mL and the liquid medium is characterized by having a surface tension that enables wetting of the liquid on a graphene plane exhibiting a contact angle less than 90 degrees; and (c) exposing the suspension to direct ultrasonication at a sufficient energy or intensity level for a sufficient length of time to produce the NGPs. Pristine NGPs can be used as a conductive additive in transparent electrodes for solar cells or flat panel displays (e.g., to replace expensive indium-tin oxide), battery and supercapacitor electrodes, and nanocomposites for electromagnetic wave interference (EMI) shielding, static charge dissipation, and fuel cell bipolar plate applications.
Owner:GLOBAL GRAPHENE GRP INC

Meshed touchscreen pattern

Meshed touchscreen pattern. A conductive pattern implemented within a touchscreen (e.g., using indium tin oxide (ITO) such as may be deposited on a substrate composed of polyester or some other material) provides paths for signals traveling through the touchscreen. By monitoring these signal in accordance with some means (e.g., cross point detection, zone detection, etc.) an estimate may be made as to a location of user's interaction with the touchscreen (e.g., finger or stylus touching of the touchscreen). The conductive pattern includes a number of conductors aligned in various directions (e.g., row and column conductors) across the touchscreen, and they are separated by a dielectric layer (e.g., air, SiO2, or any other desirable dielectric layer). The conductors include a great deal of interlacing and meshing as achieved by spurs, extensions, and / or protrusions (e.g., of any desired shape) extending from one conductor into an adjacent conductor within the conductive pattern.
Owner:WACOM CO LTD

Front contact with high-function TCO for use in photovoltaic device and method of making same

InactiveUS20080047602A1Reduce potential barrierLower work functionSemiconductor devicesIndium tin oxideZinc
This invention relates to a front contact for use in an electronic device such as a photovoltaic device. In certain example embodiments, the front contact of the photovoltaic device includes a low work-function transparent conductive oxide (TCO) of a material such as tin oxide, zinc oxide, or the like, and a thin high work-function TCO of a material such as oxygen-rich ITO (indium tin oxide) or the like. The high-work function TCO is located between the low work-function TCO and the uppermost semiconductor layer of the photovoltaic device so as to provide for substantial work-function matching between the low work-function TCO and the high work-function uppermost semiconductor layer of the device in order to reduce a potential barrier for holes extracted from the device by the front contact.
Owner:GUARDIAN GLASS LLC

Light source and display device

The invention provides electroluminescent (EL) elements, such that a red EL light source, a green EL light source and a blue EL light source emit red color light, green color light, and blue color light, respectively, and are disposed at the rear of liquid crystal display elements. Each EL light source includes an organic EL element in which an organic thin film emits light. Each EL light source has a structure in which an organic luminescent layer is sandwiched between an indium tin oxide (ITO) electrode and a metal electrode which have striped patterns which are orthogonal to each other, and sections (luminescent sections) at which the striped patterns of the ITO electrode and the metal electrode intersect with each other emit light. The luminescent sections are arrayed two-dimensionally on a glass substrate and illuminate the entire display area of the liquid crystal display element.
Owner:SEIKO EPSON CORP

Supercritical fluid process for producing nano graphene platelets

The present invention provides a process for producing pristine or non-oxidized nano graphene platelets (NGPs) that are highly conductive. The process comprises: (i) subjecting a graphitic material to a supercritical fluid at a first temperature and a first pressure for a first period of time in a pressure vessel and then (ii) rapidly depressurizing the fluid at a fluid release rate sufficient for effecting exfoliation of the graphitic material to obtain the NGP material. Conductive NGPs can be used as a conductive additive in transparent electrodes for solar cells or flat panel displays (e.g., to replace expensive indium-tin oxide), battery and supercapacitor electrodes, and nanocomposite for electromagnetic wave interference (EMI) shielding and static charge dissipation, etc.
Owner:GLOBAL GRAPHENE GRP INC

Resistive touch screen incorporating conductive polymer

Conductive polymers can be used as the signal carrying layers in resistive touch screens. Using conductive polymers can allow higher sheet resistance than is conventionally obtained using indium tin oxide while maintaining electrical continuity and durability of the layer. Higher sheet resistance can also lead to reduced errors and reduced power consumption, as well as better optical transmission. Sheet resistance may be limited on an upper end by desired data sampling rates. Also disclosed are resistive touch screens that employ a conductive polymer on both the topsheet and bottom substrate and that can be operated with the use of conventional electronics.
Owner:3M INNOVATIVE PROPERTIES CO

Organic semiconductor device having an active dielectric layer comprising silsesquioxanes

An organic field effect transistor (FET) is described with an active dielectric layer comprising a low-temperature cured dielectric film of a liquid-deposited silsesquioxane precursor. The dielectric film comprises a silsesquioxane having a dielectric constant of greater than 2. The silsesquioxane dielectric film is advantageously prepared by curing oligomers having alkyl(methyl) and / or alkyl(methyl) pendant groups. The invention also embraces a process for making an organic FET comprising providing a substrate suitable for an organic FET; applying a liquid-phase solution of silsesquioxane precursors over the surface of the substrate; and curing the solution to form a silsesquioxane active dielectric layer. The organic FET thus produced has a high-dielectric, silsesquioxane film with a dielectric constant of greater than about 2, and advantageously, the substrate comprises an indium-tin oxide coated plastic substrate.
Owner:ALCATEL-LUCENT USA INC +1

High Quality Emission Control Coatings, Emission Control Glazings, and Production Methods

The invention provides emission control coatings. The coating includes a transparent conductive film over which there is an oxygen barrier film. In some embodiments, the transparent conductive film comprises indium tin oxide and the oxygen barrier film comprises silicon nitride.
Owner:CARDINAL CG

Touch sensitive displays

Displays such as organic light-emitting diode displays may be provided with touch sensing capabilities. A touch sensor (14) may be formed from electrodes (44) located on a thin-film encapsulation layer (84) or one or more sides of a polarizer. A single-sided or double-sided touch sensor panel may be attached to the upper or lower surface of a polarizer. Control circuitry (36) may be used to provide control signals to light-emitting diodes (50) in the display using a grid of control lines. The control lines and transparent electrode structures such as indium tin oxide structures formed on a thin-film encapsulation layer (84) or polarizer may be used as electrodes for a touch sensor. Displays (14) may have active regions (A) and inactive peripheral portions (IR). The displays (14) may have edge portions that are bent along a bend axis (122) that is within the active region (A) to form a borderless display. Virtual buttons (VB) may be formed on the bent edge portions.
Owner:APPLE INC

Ink jet mechanism with thermoelastic bend actuator having conductive and resistive beams

An ink jet printer uses a planar thermoelastic bend actuator to eject ink from a nozzle chamber. The thermal actuator includes a lower planar surface constructed from a highly conductive material such as a semiconductor metal layer interconnected to an upper planar surface constructed from an electrically resistive material such as Indium Tin Oxide (ITO), such that, upon passing a current between the planar surfaces, the thermal actuator is caused to bend towards an ink ejection port so as to thereby cause ejection of ink from the ink ejection port. The actuator is attached to a substrate and further includes a stiff paddle portion which increases the degree of bending of the actuator near the point where it is attached to the substrate. The surfaces are further coated with a passivation material as required.
Owner:SILVERBROOK RES PTY LTD +1

Method for preparing flexible and transparent conductive graphene membrane

The invention relates to a method for preparing a flexible and transparent conductive graphene membrane, belongs to the field of the science and technology of nanometer photoelectric materials and particularly relates to the preparation of a thermal reduction and oxidation graphene membrane at the temperature of 1,000 DEG C and technology for transferring the membrane onto a flexible substrate. The flexible and transparent conductive graphene membrane provided by the invention has the advantages of high electrical conductivity, high transmission of light, large-area preparation, rich raw materials, high material utilization ratio, simple preparation method, environmental protection and the like. The technology overcomes the defects of easy brittleness of the conventional indium tin oxide (ITO) and poor electrical conductivity of the conventional flexible conductive polymer membrane, is hopeful to prepare a novel flexible and transparent conductive membrane, is potentially applied to photoelectric functional apparatuses such as organic electroluminescent displays, organic electrical storages, organic solar cells and the like and is particularly applied to flexible photoelectric apparatuses.
Owner:NANJING UNIV OF POSTS & TELECOMM

Window for attenuating RF and IR electromagnetic signals

ActiveUS20140237917A1Prevent and reduce such signalImprove RF/IR attenuationRadiation protectionLight protection screensIndiumEngineering
Windows for attenuating radio frequency (RF) and infrared (IR) electromagnetic signals, so as to prevent or reduce such signals from emanating from secure facilities (e.g., government and / or military facilities). Example embodiments relate to a window including at least first and second glass substrates, at least first and second low-emissivity (low-E) coatings for blocking at least some IR and RF signals, and at least one transparent conductive oxide (TCO) inclusive coating for blocking at least some RF signals. The TCO inclusive coating may include a layer of or including indium-tin-oxide (ITO) located between at least first and second dielectric layers.
Owner:GUARDIAN GLASS LLC

Disk drive cover having a see-through insert including an electrically conductive material

A disk drive includes an opaque cover secured to a base, where the opaque cover has an opening. A see-through insert, which includes an electrically conductive material, is affixed to the opaque cover over the opening. The electrically conductive material may be a coating applied to the see-through insert which, in one embodiment is a polymer coating having a certain surface resistivity. Alternatively, the coating's ESD-dissipative properties may be due to the presence of sputtered gold, sputtered indium tin oxide or a metal film. The electrically conductive material may alternatively be embedded in the see-through insert.
Owner:WESTERN DIGITAL TECH INC

PVB (polyvinyl butyral) film for dynamically rejecting infrared rays and resisting ultraviolet rays and preparation method thereof

ActiveCN104262874AHas the effect of heat insulation and UV protectionPlay the effect of energy saving and environmental protectionPolyvinyl butyralInfrared
The invention discloses a PVB (polyvinyl butyral) film for dynamically rejecting infrared rays and resisting ultraviolet rays and a preparation method thereof. The functional PVB film comprises cesium tungsten bronze, antimony indium oxide, indium tin oxide, titanium dioxide, nano carbon spheres, zirconium carbide, PVB resin powder, a plasticizer, a trace improver and the like. The preparation method comprises the following steps: dispersing the cesium tungsten bronze composite nanoparticles with a solvent, adding the plasticizer, stirring uniformly, adding the PVB resin powder and trace improver, thoroughly mixing, and carrying out film formation on the mixture by running to obtain the heat-insulation ultraviolet-resistant PVB film. The ultraviolet rejection ratio of the PVB film is greater than 99.0%, the visible light transmittance is adjustable within the range of 60-85%, and the infrared rejection ratio is up to 80-99%; and the PVB film can be directly used for producing heat-insulation infrared / ultraviolet-resistant safety laminated glass, can be widely used in architectural curtain walls, doors / windows, zeniths, automobile windshields and the like, and is a novel energy-saving film material.
Owner:SUZHOU POLIMA MACROMOLECULE MATERIAL CO LTD

Novel infrared and radar integrated stealth fabric and preparation method thereof

The invention discloses a novel infrared and radar integrated stealth fabric and a preparation method thereof. The stealth fabric comprises an infrared camouflage surface layer and an antistatic bottom layer in turn from outside to inside; the infrared camouflage surface layer comprises an infrared stealth layer, a fabric layer and a radar wave absorption attenuation layer in turn from outside toinside; the infrared stealth layer is compounded by using a coating coated by an infrared stealth coating and a magnetron sputtering ITO (indium tin oxide) film arranged on the surface of the coating; the radar wave absorption attenuation layer comprises a sponge body; and a wave absorption material is adsorbed on the sponge body. The stealth fabric can realize radar stealth function and infraredstealth function at the same time, has good integral wave absorption effect and low surface density of materials, and has good effects on the aspects of breaking strength, bursting strength and the like. Moreover, excessive complex processes are not adopted for manufacturing the stealth fabric, and the stealth fabric can be produced by using a conventional fabric production method, so the stealthfabric is convenient for production and easy for implementation.
Owner:WUYI UNIV

Electrode With Transparent Series Resistance For Uniform Switching Of Optical Modulation Devices

Switching uniformity of an optical modulation device for controlling the propagation of electromagnetic radiation is improved by use of an electrode comprising an electrically resistive layer that is transparent to the radiation. The resistive layer is preferably an innerlayer of a wide-bandgap oxide sandwiched between layers of indium tin oxide or another transparent conductor, and may be of uniform thickness, or may be graded so as to provide further improvement in the switching uniformity. The electrode may be used with electrochromic and reversible electrochemical mirror (REM) smart window devices, as well as display devices based on various technologies.
Owner:TELEDYNE SCI & IMAGING

Graphene/metal nanowire hybrid transparent conductive films

A hybrid transparent conductive film, and methods for fabricating such hybrid transparent conductive films, involving the assembly of two-dimensional graphene-based materials with one-dimensional silver and / or copper nanowires with high optical transmittance and good electrical conductivity. The hybrid films are characterized by a good degree of control of the architecture at the nanoscale level, where the weakness(es) of each component are offset by the strengths of the other components. By rational design of the structure and using simple and locate-cost fabrication methods, hybrid films with sheet resistance of 26 ohm / sq and optical transmittance (at λ=550 nm) of 83% for reduced graphene oxide / silver nanowire films, and 64 ohm / sq and optical transmittance of 93.6% for monolayer graphene / silver nanowire films have been fabricated. These values are comparable to transparent conductive films based on indium tin oxide but are now able to be used in flexible electronics due to their good mechanical properties.
Owner:BOARD OF RGT THE UNIV OF TEXAS SYST

Transparent heat insulation coating material, preparation method and application thereof

The invention relates to a transparent heat insulation coating material, the preparation method and the application thereof. The material is made from the raw material of lanthanum hexaboride / tin indium oxide or lanthanum hexaboride / tin antimony oxide, by the steps of pretreating by ultrasonic dispersion, and grinding to prepare nanometer slurry with heat insulation function, wherein the nanometer slurry has particle sizes mainly between 10nm and 200nm, the average particle size between 50nm and 120nm, and superior dispersion stability; mixing the nanometer slurry with film forming substance, auxiliary agent and solvent, to obtain the transparent heat insulation coating material. The coating material can obstruct more than 80% of infrared light, has a visible light transmittance above 60%, achieves excellent transparency and sunshine energy shielding effect; can be directly coated on transparent glass, polycarbonate, synthetic glass and polyester; and achieves the aims of energy conservation and heat insulation.
Owner:FUDAN UNIV +1

Transparent graphene conductive thin film and preparation method thereof

The invention discloses a transparent graphene conductive thin film and a preparation method of the film, aiming at improving the acid and alkali resistance of a transparent conductive thin film. The transparent graphene conductive thin film is a graphene thin film with the thickness of 1-50nm and the electrical conductivity of 300-800S / cm, and has the light transmittance of 70-85% for light with the wavelength within the range of 200-1100nm. The preparation method of the transparent graphene conductive thin film comprises the steps of: oxidizing graphite, preparing a graphene oxide water mixed liquid, preparing a graphene oxide thin film, and reducing to obtain the transparent graphene conductive thin film. Compared with the prior art, the transparent graphene conductive thin film which is prepared by a high-temperature reduction or chemical reduction method has the advantages of being good in light transmittance and electrical conductivity, large in preparation area, simple in preparation method and low in cost; and the transparent graphene conductive thin film can be used for replacing the traditional inorganic oxide electrode material indium tin oxide (ITO), thus providing infinite space for the transparent conductive thin film and the related fields.
Owner:BTR NEW MATERIAL GRP CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products