Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

3481 results about "Transparent conducting film" patented technology

Transparent conducting films (TCFs) are thin films of optically transparent and electrically conductive material. They are an important component in a number of electronic devices including liquid-crystal displays, OLEDs, touchscreens and photovoltaics. While indium tin oxide (ITO) is the most widely used, alternatives include wider-spectrum transparent conductive oxides (TCOs), conductive polymers, metal grids and random metallic networks, carbon nanotubes (CNT), graphene, nanowire meshes and ultra thin metal films.

Method for producing display device

In a liquid crystal display device, a first substrate includes electrical wirings and a semiconductor integrated circuit which has TFTs and is connected electrically to the electrical wirings, and a second substrate includes a transparent conductive film on a surface thereof. A surface of the first substrate on which the electrical wirings are formed is opposite to the transparent conductive film on the second substrate. The semiconductor integrated circuit has substantially the same length as one side of a display screen (i.e., a matrix circuit) of the display device and is obtained by peeling it from another substrate and then forming it on the first substrate. Also, in a liquid crystal display device, a first substrate includes a matrix circuit and a peripheral driver circuit, and a second substrate is opposite to the first substrate, includes a matrix circuit and a peripheral driver circuit and has at least a size corresponding to the matrix circuit and the peripheral driver circuit. Spacers are provided between the first and second substrates. A seal material is formed outside the matrix circuits and the peripheral driver circuits in the first and second substrates. A liquid crystal material is filled inside a region enclosed by the seal material. A protective film is formed on the peripheral driver circuit that has a thickness substantially equivalent to an interval between the substrates which is formed by the spacers.
Owner:SEMICON ENERGY LAB CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products