Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

54 results about "Cmos amplifier" patented technology

CMOS amplifiers are ubiquitous analog circuits which are used in computers, audio systems, smart phones, cameras, telecommunication systems, biomedical circuits and many other systems, and their performance has great impact on the overall specifications of the systems.

Random number generator and generation method

InactiveUS6324558B1Improve its ability to generateReduce defectsRandom number generatorsDigital function generatorsCmos comparatorShift register
An RNG circuit is connected to the parallel port of a computer. The circuit includes a flat source of white noise and a CMOS amplifier circuit compensated in the high frequency range. A low-frequency cut-off is selected to maintain high band-width yet eliminate the 1 / f amplifier noise tail. A CMOS comparator with a 10 nanosecond rise time converts the analog signal to a binary one. A shift register converts the serial signal to a 4-bit parallel one at a sample rate selected at the knee of the serial dependence curve. Two levels of XOR defect correction produce a BRS at 20 kHZ, which is converted to a 4-bit parallel word, latched and buffered. The entire circuit is powered from the data pins of the parallel port. A device driver interface in the computer operates the RNG. The randomness defects with various levels of correction and sample rates are calculated and the RNG is optimized before manufacture.
Owner:QUANTUM WORLD

Switched capacitor amplifier with higher gain and improved closed-loop gain accuracy

A switched capacitor CMOS amplifier uses a first stage non-inverting CMOS amplifier driving a second stage inverting CMOS amplifier. The first stage amplifier is provided with positive feedback to substantially increase the gain of the first stage amplifier. In the described examples, the positive feedback is provided either by connecting a capacitor from the output to the input of the first stage amplifier or by connecting a shunt transistor in parallel with an input transistor and driving the transistor from the output of the first stage amplifier. The substantially increased gain resulting from the positive feedback allows the gain of the switched capacitor amplifier to be set by the ratio of the capacitance of an input capacitor to the capacitance of a feedback capacitor. The amplifier also includes switching transistors for periodically discharging the input capacitor and the feedback capacitor.
Owner:MICRON TECH INC

System and method for providing slew rate enhancement for two stage CMOS amplifiers

A slew rate enhancement circuit is disclosed for increasing a slew rate in a two stage CMOS amplifier. The slew rate enhancement circuit detects an input signal transition in the two stage CMOS amplifier. Depending on the polarity of the input signal transition the slew rate enhancement circuit turns on either (1) a first current source to charge a first compensation capacitor, or (2) a second current source to charge a second compensation capacitor. The slew rate enhancement circuit increases the slew rate by a factor of four to five and decreases the settling time of a voltage transition by a factor of three.
Owner:NAT SEMICON CORP

Radio frequency power amplifier

The invention discloses a radio frequency power amplifier integrated on a same chip. The radio frequency power amplifier comprises two stages of amplifying circuits. An automatic biasing cascode CMOS amplifier is adopted in the first-stage amplifying circuit, and a SiGe HBT connected through a common emitter is adopted in the second-stage amplifying circuit. According to the radio frequency power amplifier, the withstand voltage, the isolation and the bandwidth of the circuits can be improved, the voltage swing and working current of the circuits can be improved, the gain and the maximum output power of the circuits can be improved, the frequency performance of the power amplifier can be improved, full-chip integration can be achieved, and accordingly, the integration degree is improved, cost is reduced, and the application is simplified.
Owner:SHANGHAI HUAHONG GRACE SEMICON MFG CORP

CMOS amplifier

A CMOS amplifier according to the present invention includes an input stage, an output stage, a feedforward type idling current control circuit, and an interrupter circuit. The output stage includes a grounded-source push-pull circuit having an output P-channel MOS transistor and an output N-channel MOS transistor. The input stage includes two differential amplifier circuits. The idling current control circuit supplies idling currents to the MOS transistors of the output stage so that the MOS transistors of the output stage perform class AB amplification operations. The interrupter circuit includes a plurality of switches which are off in a stand-by state to stop power supply to the differential amplifier circuits, stop operations of constant current circuits included in the idling current control circuit, and cancel gate-source voltages at the MOS transistors of the output stage.
Owner:PANASONIC CORP

System and method for linearizing a CMOS differential pair

An integrated receiver with channel selection and image rejection substantially implemented on a single CMOS integrated circuit. A receiver front end provides programable attenuation and a programable gain low noise amplifier. LC filters integrated onto the substrate in conjunction with image reject mixers provide image frequency rejection. Filter tuning and inductor Q compensation over temperature are performed on chip. Active filters utilize multi track spiral inductors with shields to increase circuit Q. The filters incorporate a gain stage that provides improved dynamic range through the use of cross coupled auxiliary differential pair CMOS amplifiers to cancel distortion in a main linearized differential pair amplifier. Frequency planning provides additional image rejection. Local oscillator signal generation methods on chip reduce distortion. A PLL generates needed out of band LO signals. Direct synthesis generates in band LO signals. PLL VCOs are centered automatically. A differential crystal oscillator provides a frequency reference. Differential signal transmission throughout the receiver is used. ESD protection is provided by a pad ring and ESD clamping structure. Shunts utilize a gate boosting at each pin to discharge ESD build up. An IF VGA utilizes distortion cancellation achieved with cross coupled differential pair amplifiers having their Vds dynamically modified in conjunction with current steering of the differential pairs sources.
Owner:AVAGO TECH INT SALES PTE LTD

High frequency differential power amplifier

A differential CMOS amplifier includes two CMOS inverters and biasing circuitry providing feedback loops across the output and input of each inverter. The biasing circuitry provides linear biasing so that the inverters can apply a desired gain to a pair of high frequency input signals (i.e., a differential input signal). The biasing circuitry can include operational amplifiers (op-amps) for providing positive feedback control between the output and input of the inverters. The inputs of the inverters can be regulated by this feedback loop such that their outputs are driven to the reference voltage, thereby forcing the inverters to operate in their linear regions so that non-distorting amplification can be applied to the input AC signals.
Owner:SONRAI MEMORY LTD

Low noise amplifier

The invention discloses a low noise amplifier. The low noise amplifier comprises a first-stage amplifying circuit, a second-stage amplifying circuit, a first-stage biasing circuit, a second-stage biasing circuit and an output impedance matching circuit, wherein the first-stage amplifying circuit and the second-stage amplifying circuit are cascaded. The first-stage amplifying circuit comprises first NMOS pipes with the common sources connected, and a first resistor and a first inductor are connected between the drain electrodes of the first NMOS pipes and a supply voltage. The second-stage amplifying circuit comprises a cascode CMOS amplifier. According to the low noise amplifier, the first-stage amplifying circuit and the second-stage amplifying circuit are cascaded so that the gain performance and the noise performance of the circuits can be greatly improved; a first inductive load at the drain end of the first-stage amplifying circuit enables the total impedance of the load end of the first-stage amplifying circuit to keep roughly unchangeable within a wide frequency range, and therefore the high frequency gain of the whole circuit can be improved and can be stable; the cascode amplifier is adopted in the second-stage amplifying circuit so that the whole low noise amplifier can obtain the good noise performance and gain performance.
Owner:SHANGHAI HUAHONG GRACE SEMICON MFG CORP

Low noise CMOS amplifier for imaging sensors

InactiveUS20050068438A1Increased amplifier gainImprove low noiseTelevision system detailsTelevision system scanning detailsMOSFETCMOS
A CMOS pixel amplifier circuit includes four transistors having the same polarity, and a photodetector. An access supply connects to the pixel circuit via a bus and is configured as a current source that acts as a distributed feedback amplifier, when it is connected to the pixel transistors. The access supply connects to an access MOSFET that isolates a common node from an output node. In this configuration, the feedback amplifier is a cascoded inverter, which provides gains 100-1000 times greater than prior circuits.
Owner:INNOVATIVE TECH LICENSING

System and method for linearizing a CMOS differential pair

An integrated receiver with channel selection and image rejection substantially implemented on a single CMOS integrated circuit. A receiver front end provides programmable attenuation and a programmable gain low noise amplifier. LC filters integrated onto the substrate in conjunction with image reject mixers provide image frequency rejection. Filter tuning and inductor Q compensation over temperature are performed on chip. Active filters utilize multi track spiral inductors with shields to increase circuit Q. The filters incorporate a gain stage that provides improved dynamic range through the use of cross coupled auxiliary differential pair CMOS amplifiers to cancel distortion in a main linearized differential pair amplifier. Frequency planning provides additional image rejection. Local oscillator signal generation methods on chip reduce distortion. A PLL generates needed out of band LO signals. Direct synthesis generates in band LO signals. PLL VCOs are centered automatically. A differential crystal oscillator provides a frequency reference. Differential signal transmission throughout the receiver is used. ESD protection is provided by a pad ring and ESD clamping structure. Shunts utilize a gate boosting at each pin to discharge ESD build up. An IF VGA utilizes distortion cancellation achieved with cross coupled differential pair amplifiers having their Vds dynamically modified in conjunction with current steering of the differential pairs sources.
Owner:AVAGO TECH INT SALES PTE LTD

Amplifying device

An amplifying device for setting input impedance at several GΩ to several tens of GΩ and improving an ESD withstand current rating is provided.An ECM is connected to an input terminal 21 and frequency characteristics become flat to a voice band by high input impedance of a CMOS amplifier 20 and the input impedance is set at several GΩ to several tens of GΩ and thereby, response time after detecting a loud voice or turning on a power source of the ECM is speeded up and desired electrical characteristics are achieved. A path for releasing a surge voltage which occurs during assembly in the outside of an IC and intrudes from the input terminal 21 to a power source terminal or an earth terminal without an influence on a signal (20 Hz to 20 kHz) of a voice band entering from the input terminal 21 can be constructed by connecting a P-channel MOS transistor 27 and an N-channel MOS transistor 28 as an ESD protective element.
Owner:PANASONIC CORP

Class ab CMOS amplifiers

A class AB output stage of a CMOS amplifier has a level-shifting voltage follower constituted by a level-shifting transistor and a current source. A bias circuit replicates the level-shifting voltage follower in a feedback arrangement to produce a variable bias voltage for the current source of both the main and replica level-shifters. The arrangement serves to control the output voltage of the level-shifter such that it provides the amplifier with a relatively constant quiescent current of the output stage over variations of manufacturing process, supply voltage, and temperature. The level shifting function can be facilitated by a resistive on-state of a power-down transistor between the level-shifting and load transistors.
Owner:POWER INTEGRATIONS INC +1

CMOS amplifier with integrated tunable band-pass function

A CMOS amplifier with integrated tunable band-pass function, a tunable active resistor structure, a method of amplifying an input signal and a method of fabricating an amplifier. The tunable active resistor structure comprises two symmetrically cross-coupled transistors.
Owner:NAT UNIV OF SINGAPORE

Apparatus and method for reducing flicker noise of CMOS amplifier

An apparatus and method of reducing a flicker noise of a CMOS amplifier is provided. In the CMOS amplifier, a load circuit is connected to a signal input circuit which includes two pairs of MOSFETs which simultaneously receive differential signals. In this instance, a first MOSFET included in a switch-bias circuit is connected to one pair of MOSFETs which receive the differential signals and functions as a current source in the case of activation of a clock signal Ø1. A second MOSFET included in the switch-bias circuit is connected to another pair of MOSFETs which receive the differential signals and functions as a current source in the case of activation of a clock signal Ø2.
Owner:SAMSUNG ELECTRONICS CO LTD

CMOS low-temperature small-noise operation amplifying circuit

The invention discloses a CMOS (Complementary Metal Oxide Semiconductor) low-temperature low-noise operational amplifier circuit. A biasing circuit part adopts a multi-stage current mirror sleeving mode, and reference current is generated by an active resistor of an MOS (Metal Oxide Semiconductor) tube comprising two connected diodes, so that the reference current of an amplifier has better temperature characteristics; an amplification part is of a differential input folded cascode structure, the open loop gain of the amplifier can be greater than 80dB by virtue of one-stage amplification, and the defect that oscillation is easily caused by a Miller compensation capacitor used by the conventional two-stage amplification at the low temperature of 77K is overcome; a large tube of which the width to length ratio is greater than 100 is adopted for differential input, the noise performance of a CMOS amplifier is improved favorably, and a differential operational amplifier can normally work at the normal temperature and the low temperature of 77K, can be used as a standard amplifier module designed for a low-temperature CMOS circuit, can be applied to a photovoltaic infrared detector circuit, and can also be applied to a long-wave infrared optical guide detector circuit.
Owner:SHANGHAI INST OF TECHNICAL PHYSICS - CHINESE ACAD OF SCI

Differential line driver

A fully differential line driver, especially for twisted copper pairs. It comprises two current amplifiers (Ap, An), made in standard CMOS technique, each having an input (Iinp, Iinn) and an output (Iop, Ion), which latter are connected via terminal resistors (Rt) to a voltage source, which may be set to a larger voltage than that used for driving the CMOS amplifiers. With this invention, a low output impedance can be combined with a large swing. Further, feedback is not necessary, avoiding problems like potential instability. A preferred embodiment also has a very low-impedance input, making it appropriate for connecting to a DAC, thus reducing distortion of its output signal. The invention is suitable for very-high-speed-digital-subscriber-line modems.
Owner:TELEFON AB LM ERICSSON (PUBL)

Apparatus for a differential self-biasing CMOS amplifier

Aspects of the invention provide a self-biasing differential amplifier. The self-biasing differential amplifier may include a first input stage and a biasing transistor pair coupled to the first input stage. A second input stage may be coupled to the first input stage and the biasing transistor pair. The first input stage of the self-biasing differential amplifier may include a first PMOS transistor coupled to a first NMOS transistor in an inverter arrangement. The second input stage may include a second PMOS transistor coupled to a second NMOS transistor. The biasing transistor pair may include a third PMOS transistor coupled to a third NMOS transistor.
Owner:AVAGO TECH INT SALES PTE LTD

System and method for reducing flicker noise from CMOS amplifiers

A technique is provided for acquiring data with reduced correlated low frequency noise interference via a data acquisition circuit. The data acquisition circuit includes a plurality of data channels comprising a plurality of amplifiers and a biasing circuit for providing bias voltages to the plurality of amplifiers. The biasing circuit is configured to generate the bias voltages and establish a relationship between the bias voltages so as to reduce correlated low frequency noise in the plurality of amplifiers.
Owner:GENERAL ELECTRIC CO

Technique to improve the gain and signal to noise ratio in CMOS switched capacitor amplifiers

The present invention comprises switched capacitor amplifiers including positive feedback, semiconductor devices, wafers and systems incorporating same and methods for amplifying signals using positive feedback, while maintaining a stable gain and producing an improved signal-to-noise ratio. One embodiment includes a switched capacitor amplifier comprising a Complementary Metal Oxide Semiconductor (CMOS) amplifier, a feed-in switched capacitor, and a feedback switched capacitor. The feed-in switched capacitor operably couples an input signal to the non-inverting input of the CMOS amplifier. Similarly, the feedback switched capacitor operably couples the amplifier output to the non-inverting input to create a positive feedback loop. A capacitance of the feedback switched capacitor relative to a capacitance of the feed-in switched capacitor comprises a feedback proportion. This feedback proportion may be configured to maintain a stable gain of the switched capacitor amplifier and increase a signal-to-noise ratio of the switched capacitor amplifier, even with the switched capacitor amplifier configured in a positive feedback arrangement.
Owner:MICRON TECH INC

Power amplifier for a transmitter

A power amplifier for a transmitter includes a plurality of CMOS amplifiers of different types which are serially and alternately connected, and matching circuits for matching impedance discrepancies between the CMOS amplifiers of different types.
Owner:SAMSUNG ELECTRONICS CO LTD

High frequency power amplifier

A CMOS amplifier includes a CMOS inverter and a bias circuit coupled in a feedback loop between the output and input of the inverter. The bias circuit provides linear biasing so that the inverter can apply a desired gain to a high frequency input signal. The bias circuit can include an operational amplifier (op-amp) providing positive feedback control between the output and input of the inverter. By providing a reference voltage to the other input of the op-amp, the input of the inverter is regulated such that its output is driven to the reference voltage. This in turn forces the inverter to operate in its linear region, so that the inverter applies non-distorting amplification to the input AC signal. The AC signal is prevented from affecting the operation of the bias circuit by resistors coupling the bias circuit to the op-amp.
Owner:MICREL
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products