Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

190 results about "Carbon dioxide production" patented technology

Method for preparing aromatic hydrocarbons through hydrogenation of carbon dioxide

The invention provides a method for preparing aromatic hydrocarbons through hydrogenation of carbon dioxide. A gas mixture composed of carbon dioxide and hydrogen is directly converted under the catalysis of a multifunctional composite catalyst under the reaction conditions of a temperature of 250 to 450 DEG C, a pressure of 0.01 to 10.0 MPa, space velocity of 500 to 50000 mL / (h.g<cat>) and a H<2> / CO<2> mol ratio of 0.5 to 8.0 so as to produce the aromatic hydrocarbons. The composite catalyst is prepared by mixing a first component with a second component, wherein the first component is a Fe-based catalyst for preparation of low-carbon olefins through hydrogenation of carbon dioxide, and the second component is one or more than two selected from a group consisting of molecular sieves modified or unmodified by metals and mainly exerting aromatization effect on olefins. According to the method, the one-way CO2 conversion rate can reach 33% or above; the selectivity of hydrocarbon products can be controlled to be 80% or above; the content of methane in hydrocarbon products is lower than 8%; the content of C<5+> hydrocarbons is higher than 65%; and the aromatic hydrocarbons account for63% or more of the C<5+> hydrocarbons. The method opens up a novel route for production of aromatic hydrocarbons from carbon dioxide.
Owner:DALIAN INST OF CHEM PHYSICS CHINESE ACAD OF SCI +1

Method for restoring carbon dioxide to produce methane and acetic acid by utilizing biological electrochemical system

The invention provides a method for restoring carbon dioxide to produce methane and acetic acid by utilizing a biological electrochemical system and regulating and controlling microorganism metabolites by utilizing cathodic polarization potential. A bio-cathode is prepared in the biological electrochemical system, carbon dioxide (CO2) is fed into a cathode chamber and an anode chamber to circularly aerate, the cathodic polarization potential is set from -850mV to -1150mV (vs.Ag / AgCl), and microorganism on a cathode can directly obtain electrons from electrodes or from hydrogen produced by the electrodes to restore the carbon dioxide and produce the methane and the acetic acid. The methane and the acetic acid which are microbial synthesis products can be regulated and controlled by setting different cathodic polarization potentials. The electrodes do not need to use expensive catalyst, and are low in cost. The method for restoring the carbon dioxide to produce the methane and the acetic acid by utilizing the biological electrochemical system is rapid in production rate of the methane and the acetic by restoring the carbon dioxide, and has important application prospect for fixedly converting the carbon dioxide and synthetizing organic chemicals.
Owner:CHENGDU INST OF BIOLOGY CHINESE ACAD OF S

Production method and applications of cyclic carbonate

The invention relates to a production method and applications of cyclic carbonate. According to the present invention, the used catalyst is a multifunctional biomimetic heterogeneous catalyst formed by an organic porous copolymer based on metalloporphyrin and a quaternary phosphonium salt, the catalyst carrier is formed by carrying out mixed polymerization on alkylene-functionalized metalloporphyrin and a quaternary phosphonium salt, and the active component of the catalyst comprises metalloporphyrin (as a Lewis acid activation epoxy compound) and a quaternary phosphonium salt (as a ring-opening nucleophilic reagent) functional group; the obtained multifunctional biomimetic heterogeneous catalyst can be used for fixed beds, slurry beds, kettle type reactors, trickle beds and other reactors; the obtained multifunctional biomimetic heterogeneous catalyst has good performance, extremely high activity (2000-6000 h<-1>), good selectivity (more than 99%) of the formed cyclic carbonate and strong substrate applicability in the cyclic carbonate production reaction between the epoxy compound and the carbon dioxide, further has good stability, and can be simply and efficiently separated fromthe substrate and the product.
Owner:DALIAN INST OF CHEM PHYSICS CHINESE ACAD OF SCI

Production of crystalline sodium bicarbonate using CO2 recovered from another alkali production process

A process for the joint production of crystalline sodium bicarbonate and another alkali compound, in which the step for producing such alkali compound generates CO2 as a byproduct, at least a portion of which is used as a feed to the sodium bicarbonate production step. The produced alkali compound is preferably crystalline sodium sulfite. The joint production process preferably employs as feedstock one or more sodium carbonate liquors derived from trona ore. A gas feed which contains CO2 byproduct is subjected to a gas treatment which may include water removal and / or compression before it is used to produce sodium bicarbonate crystals from a sodium carbonate liquor. Such gas feed may comprise a reactor offgas exiting a sulfite reactor; a vent gas exiting a feed or surge tank; a decarbonation gas exiting a decarbonation unit; a vent gas vented from a crystallizer heater; or combinations of two or more thereof.
Owner:SOLVAY CHEM INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products