Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

39results about How to "Molecular weight" patented technology

Processes based on atom (or group) transfer radical polymerization and novel (co)polymers having useful structures and properties

InactiveUS6887962B2Increase in the rate of side reactionsReduce rateWater solubleRadical polymerization
Improved processes for atom (or group) transfer radical polymerization (ATRP) and novel polymers have been developed and are described. In certain embodiments, novel copolymers comprising a least one polymeric branch or polymeric block with a predominantly alternating monomer sequence are described. Novel copolymers comprising a least one polymeric branch or polymeric block with a gradient monomer structure are described. Additionally, novel copolymers comprising a least one polymeric branch or polymeric block with a predominantly periodic monomer sequence are also described. Novel copolymers having a water soluble backbone and at least two hydrophobic polymeric branches grafted to the water soluble backbone are also described.
Owner:CARNEGIE MELLON UNIV

Methods for forming amorphous ultra-high molecular weight polyalphaolefin drag reducing agents

A composition including polyalphaolefins that function as drag reducing agents and a process for the preparation of polyalphaolefins that function as drag reducing agents are disclosed. The process includes contacting alpha olefin monomers with a catalyst system, which includes a catalyst and an activator (co-catalyst) in a reactant mixture. The catalyst is a transition metal catalyst, preferably titanium trichloride, and the co-catalyst may include an alkylaluminoxane, alone or in combination, with a dialkylaluminum halide or a halohydrocarbon. The polymerization of the alpha olefin monomers produces a non-crystalline, ultra-high molecular weight polyalphaolefin having an inherent viscosity of at least 10 dL/g. The addition of the alkylaluminoxane during the polymerization process provides for a non-crystalline, ultra-high molecular weight polyalphaolefin and a more uniform molecular weight distribution of the resulting polyalphaolefin, thereby creating a drag reducing agent superior to known drag reducing agents. A process for forming a drag reducing agent comprising a non-crystalline, ultra-high molecular weight polyalphaolefin having an inherent viscosity of about at least 10 dL/g and a process for reducing drag in a conduit are also disclosed.
Owner:MPOWER SPECIALTY CHEM

Method for manufacturing an optical film having a convexoconcave structure, optical film, wire grid polarizer and retardation film

InactiveUS20070252293A1High productivity and uniformityHigh productivityDiffusing elementsOptical articlesSolventChemistry
A manufacturing method of an optical film provided with a convexoconcave structure, comprises the steps of: coating a resin solution including a first resin solved by a solvent onto an endless or roll-like mold provided with a convexoconcave structure, and forming a resin solution layer on the mold; laminating a film substrate onto the resin solution layer to make a laminated film before the solvent in the resin solution layer is completely dried, the film substrate including a second resin, which is capable of absorving the solution or is soluble by the solvent; and peeling the laminated film from the mold before the solvent in the laminated film is completely dried.
Owner:KONICA MINOLTA OPTO

Processes based on atom (or group) transfer radical polymerization and novel (co)polymers having useful structures and properties

InactiveUS7572874B2Increase in the rate of side reactionsReduce rateBackbone chainWater soluble
Improved processes for atom (or group) transfer radical polymerization (ATRP) and novel polymers have been developed and are described. In certain embodiments, novel copolymers comprising a least one polymeric branch or polymeric block with a predominantly alternating monomer sequence are described. Novel copolymers comprising a least one polymeric branch or polymeric block with a gradient monomer structure are described. Additionally, novel copolymers comprising a least one polymeric branch or polymeric block with a predominantly periodic monomer sequence are also described. Novel copolymers having a water soluble backbone and at least two hydrophobic polymeric branches grafted to the water soluble backbone are also described.
Owner:CARNEGIE MELLON UNIV

Energy ray-curable elastomer composition

An energy ray-curable elastomer composition, which comprises an energy ray-curable compound (A) having a (meth)acryloyl group, a polythiol compound (B) having 2 to 6 mercapto groups per molecule, and a polyfunctional (meth)acrylate (C), characterized in that the ratio of the number of (meth)acryloyl functional groups in component (A) to the number of mercapto functional groups in component (B) is 100:0.1-100:5n (wherein n represents the number of mercapto groups per molecule of the polythiol compound), and component (C) is used at a ratio of 1-8 parts by mass per 100 parts by mass of component (A). Thus, an energy ray-curable elastomer composition, which can achieve both high breaking elongation and good processability and shows good compression set, can be provided.
Owner:BRIDGESTONE CORP

Methods for forming amorphous ultra-high molecular weight polyalphaolefin drag reducing agents using a halohydrocarbon

A composition including polyalphaolefins that function as drag reducing agents and a process for the preparation of polyalphaolefins that function as drag reducing agents are disclosed. The process includes contacting alpha olefin monomers with a catalyst system, which includes a catalyst and an activator (co-catalyst) in a reactant mixture. The catalyst is a transition metal catalyst, preferably titanium trichloride, and the co-catalyst may include an alkylaluminoxane, alone or in combination, with a dialkylaluminum halide or a halohydrocarbon. The polymerization of the alpha olefin monomers produces a non-crystalline, ultra-high molecular weight polyalphaolefin having an inherent viscosity of at least 10 dL / g. The addition of the alkylaluminoxane during the polymerization process provides for a non-crystalline, ultra-high molecular weight polyalphaolefin and a more uniform molecular weight distribution of the resulting polyalphaolefin, thereby creating a drag reducing agent superior to known drag reducing agents. A process for forming a drag reducing agent comprising a non-crystalline, ultra-high molecular weight polyalphaolefin having an inherent viscosity of about at least 10 dL / g and a process for reducing drag in a conduit are also disclosed.
Owner:MPOWER SPECIALTY CHEM

Erodible polymers for injection

A composition for administration of a beneficial agent, contains a solvent mixture including a hydrophobic solvent and a hydrophilic solvent; a bioerodible polymer; and a beneficial agent. The polymer and the beneficial agent are dissolved. The composition has a low viscosity, allowing for easy injection through standard hypodermic needles.
Owner:GENENTECH INC

Process for producing phenolic novolak resin

InactiveUS20070112168A1Sufficient reaction heatEnhance speedVapor pressureAldehyde
A process for advantageously producing, in a short period of time, a phenolic novolak resin, in which substantially no unreacted aldehyde remains, by using a continuous reactor, while a generation of high order condensation products is prevented. In continuously producing the phenolic novolak resin by reacting at least one of phenols with at least one of aldehydes in the presence of an acidic catalyst by using a continuous reactor which has a long reaction tube: the reaction tube is provided with a heating zone and a temperature control zone; a mixture of raw materials is heated, at the heating zone, to a temperature not less than a temperature, at which a reaction heat is generated; and then the mixture is subjected to a cooling operation at the temperature control zone, while the pressure within the reaction tube is kept to be not lower than a vapor pressure of water.
Owner:ASAHI YUKIZAI KOGYO CO LTD

Polysaccharide composition and methods of isolation of the emulsion stabilizing cationic polyelectrolytic polysaccharide

The present invention relates to purification and use of a novel emulsion stabilizing polysaccharide. In particular, a polyelectrolyte exopolysaccharide with high molecular weight comprising a high molecular weight polymer with a tri-saccharide repeating unit is disclosed. In one aspect of the invention, methods are directed to isolating and purifying a high molecular weight exopolysaccharide (EPS) from a cell supernatant. In another aspect, methods are disclosed for isolating a lipopolysaccharide (LPS) and a high molecular weight Acinetobacter polyelectrolyte exopolysaccharide (APE) from Acinetobacter bacteria. Compositions are also directed to lipid nanoparticles comprising a therapeutic agent encapsulated by a high molecular weight polysaccharide and nanoparticles comprising a therapeutic agent bound to a cationic polysaccharide cross-linked with a polyanion.
Owner:TRUSTEES OF TUFTS COLLEGE TUFTS UNIV

Use of polymerizable ultraviolet absorber in polyurethane and composition for preparing polyurethane comprising the same

A use of a polymerizable ultraviolet absorber is disclosed, which is applied to a polyurethane preparation. The polymerizable ultraviolet absorber is obtained by reacting an UV absorber having a reactive hydrogen group with a polyisocyanate having three —NCO groups. In addition, a composition for forming polyurethane comprising the aforementioned polymerizable ultraviolet absorber is also disclosed.
Owner:EVERLIGHT CHEMICAL INDUSTRIAL CORPORATION
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products