Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

2147results about "Fluidised-bed furnaces" patented technology

Elimination of flow and pressure gradients in low utilization processes

The amount of atoms diffused into a substrate may be made uniform or the thickness of a thin film may be made uniform in a low species utilization process by stopping the flow of gas into a reaction chamber during the low species utilization process. Stopping the flow of gas into a reaction chamber may entail closing the gate valve (the valve to the vacuum pump), stabilizing the pressure within the reaction chamber, and maintaining the stabilized pressure while stopping the gas flowing into the chamber. Low species utilization processes include the diffusion of nitrogen into silicon dioxide gate dielectric layers by decoupled plasma nitridation (DPN), the deposition of a silicon dioxide film by rapid thermal processing (RTP) or chemical vapor deposition (CVD), and the deposition of silicon epitaxial layers by CVD.
Owner:APPLIED MATERIALS INC

Cryoplasty device and method

InactiveUS7022120B2Preventing or slowing the post-procedure reclosure of a dilated lesionPrevent and slow recoilDilatorsCatheterPercent Diameter StenosisPercutaneous angioplasty
A cryoplasty catheter and method for preventing or slowing reclosure of a lesion following angioplasty. The cryoplasty catheter includes a shaft having proximal and distal ends and a dilatation balloon disposed at the distal end. An intake lumen and exhaust lumen are defined by the shaft to deliver coolant to the balloon and to exhaust or drain coolant from the balloon. The method in accordance with the present invention includes cooling a lesion to aid in remodeling the lesion through dilatation and / or freezing a portion of the lesion adjacent the dilatation balloon to kill cells within the lesion to prevent or retard restenosis.
Owner:BOSTON SCI SCIMED INC

Adsorption Desulfurization Process for Hydrocarbons and a Reaction Apparatus Therefor

The present invention relates to an airflow particle sorter, comprising: a top-sealed sorter main body, a discharge port, an outtake tube and at least one directing-intake port; the inner space of the sorter main body, from the above to the bottom, includes, a straight tube zone and a cone zone, the conical bottom of the cone zone is connected to the straight tube zone; the discharge port is located at the bottom of the cone zone; the directing-intake port is installed in the upper part of the straight tube zone in a tangential direction of the straight tube zone, and is communicated with the inner space of the sorter main body; the outtake tube is hermetically inserted into the top of the sorter main body, and extends downwardly to the lower part of the straight tube zone, and the outtake tube has a sealed bottom end; the lower part of the outtake tube is installed with at least one directing-outtake port, which communicates the outtake tube with the inner space of the sorter main body, the directing-outtake port is installed in a tangential direction of the outtake tube. The present invention further relates to a fluidized bed reactor and an adsorption desulfurization reaction apparatus as well as an adsorption desulfurization process.
Owner:CHINA PETROCHEMICAL CORP +1

Up and down conversion systems for production of emitted light from various energy sources including radio frequency, microwave energy and magnetic induction sources for upconversion

Methods and systems for producing a change in a medium. A first method and system (1) place in a vicinity of the medium at least one upconverter including a gas for plasma ignition, with the upconverter being configured, upon exposure to initiation energy, to generate light for emission into the medium, and (2) apply the initiation energy from an energy source including the first wavelength λ1 to the medium, wherein the emitted light directly or indirectly produces the change in the medium. A second method and system (1) place in a vicinity of the medium an agent receptive to microwave radiation or radiofrequency radiation, and (2) apply as an initiation energy the microwave radiation or radiofrequency radiation by which the agent directly or indirectly generates emitted light in the infrared, visible, or ultraviolet range to produce at least one of physical and biological changes in the medium.
Owner:IMMUNOLIGTHT LLC +1

Radiation-heated fluidized-bed reactor

A radiation-heated fluidized-bed reactor and a process for producing high-purity polycrystalline silicon by using this reactor are provided. In this reactor, a heater device (14) is a radiation source for thermal radiation which is arranged outside the inner reactor tube and as a cylinder around the heater zone, without being in direct contact with the inner reactor tube. The inner reactor tube is designed in such a manner that it uses thermal radiation to heat the silicon particles in the heating zone to a temperature which is such that the reaction temperature is established in the reaction zone.
Owner:WACKER CHEM GMBH

Method for converting biomass into synthesis gas using a pressurized multi-stage progressively expanding fluidized bed gasifier followed by an oxyblown autothermal reformer to reduce methane and tars

The invention provides systems and methods for converting biomass into syngas using a pressurized multi-stage progressively expanding fluidized bed gasifier to eliminate or reduce the formation of methane, volatiles such as BTX, and tars. The gasifier may include a reactive stage that may receive a biomass feed through a feed line and oxygen through an oxygen feed line. The gasifier may also include a fluidized bed section that may be configured to receive the reaction products from the first stage, mix them and perform fluidized bed activity. A gasifier may also have a disengagement section that may be configured to separate fluidized media and particulate matter from syngas product. A gasification system may also include oxyblown catalytic autothermal reactor and a cryogenic air separation unit.
Owner:SYNT

Method and apparatus for making a middle distillate product and lower olefins from a hydrocarbon feedstock

Disclosed is a process for making middle distillate and lower olefins. The process includes catalytically cracking a gas oil feedstock within a riser reactor zone by contacting under suitable catalytic cracking conditions within the riser reactor zone the gas oil feedstock with a middle distillate selective cracking catalyst that comprises amorphous silica alumina and a zeolite to yield a cracked gas oil product and a spent cracking catalyst. The spent cracking catalyst is regenerated to yield a regenerated cracking catalyst. Within an intermediate cracking reactor such as a dense bed reactor zone and under suitable high severity cracking conditions a gasoline feedstock is contacted with the regenerated cracking catalyst to yield a cracked gasoline product and a used regenerated cracking catalyst. The used regenerated cracking catalyst is utilized as the middle distillate selective catalyst.
Owner:SHELL USA INC

Seat climate control system

A method for thermally conditioning a space adjacent a seat assembly includes activating a heating element positioned within the seat assembly beneath a seat covering. A fluid module that includes a fluid supply device and a thermoelectric element is activated to direct heated air from the fluid module to a space adjacent the seat assembly through a distribution system formed at least partially in the seat cushion. After a period of time, the heating element is deactivated.
Owner:GENTHERM INC

Method and apparatus for producing carbon nanotubes

A method and apparatus for catalytic production of carbon nanotubes. Catalytic particles are exposed to different process conditions at successive stages wherein the catalytic particles do not come in contact with reactive (catalytic) gases until preferred process conditions have been attained, thereby controlling the quantity and form of carbon nanotubes produced. The method also contemplates methods and apparatus which recycle and reuse the gases and catalytic particulate materials, thereby maximizing cost efficiency, reducing wastes, reducing the need for additional raw materials, and producing the carbon nanotubes, especially SWNTs, in greater quantities and for lower costs.
Owner:THE BOARD OF RGT UNIV OF OKLAHOMA

Process and a plant for the production of Portland cement clinker

A process is disclosed for producing cement clinker, comprising the steps of: a) providing a mixture of ground calcareous materials and ground argillaceous materials; b) heating the mixture of step a) to a temperature sufficient to calcine and fuse the ground materials to form the cement clinker, and thereby producing an exhaust gas containing CO2; c) catalysing the hydration of at least a portion of the CO2 contained in the exhaust gas and producing a solution containing bicarbonate ions and hydrogen ions; and d) adding to the solution obtained in step c) metal ions, and adjusting the pH of the solution to precipitate a carbonate or said metal. Preferably, the metal ions are Ca++ obtained from the dissolution of a material selected from the group consisting of CaCl2, cement kiln dust and sea salts and the carbonate is CaCO3 which is advantageously recycled into the process by adding the CaCO3 to the mixture of step a). A cement plant for performing this process is also disclosed.
Owner:CO2 SOLUTION

Portable apparatus for extracting low carbon petroleum and for generating low carbon electricity

The Portable Renewable Energy System for Enhanced Oil Recovery (“PRESEOR”) is a truck mobile system that reforms biomass into CO2 and hydrogen, following which the gases are separated, with the CO2 sequestered underground for enhanced oil recovery (EOR) and the hydrogen used to generate several megawatts of carbon-free electricity. In contrast to large central power plants that are generally not well-located to support EOR, the small PRESEOR can go directly to the oilfields where it is needed, and do so in a timely manner. The PRESEOR sequesters more biomass-derived carbon than is released by the burning of the oil it yields, thereby producing not only carbon-free electricity but carbon-free oil. Using PRESEOR, over 80 billion barrels of U.S. oil would be made recoverable, without the need to drill new wells in pristine areas.
Owner:PIONEER ENERGY

Die-based in-fab process monitoring and analysis system for semiconductor processing

A method is provided for manufacturing, the method including processing a workpiece in a plurality of processing steps and measuring characteristics of the processing performed on the workpiece in at least two of the plurality of processing steps. The method also includes displaying the characteristics measured by overlaying the characteristics measured at each of the at least two of the plurality of processing steps to display a final resulting workpiece.
Owner:GLOBALFOUNDRIES INC

Biodiesel production unit

In a first aspect, systems and methods for producing biodiesel fuel include a modular production unit incorporated onto a single platform or into a housing for ease of relocatability. The modular production unit preferably includes a mixing unit, a reactor unit, a separation unit, a distillation unit, and a filtering unit, all incorporated onto or into a self-contained platform or housing that is able to be easily relocated. In a second aspect, the modular production unit is combined with additional fixed and / or relocatable components to provide a biodiesel processing plant. In a third aspect, a raw materials processing system and method includes a roller barrel adapted for recovery, transportation, and introduction of recycled oil feedstock into a biodiesel manufacturing process. The raw materials processing system preferably includes a hot box for filtering and heating the raw recycled oil feedstock.
Owner:BIODIESEL IND

Multi stage selective catalytic cracking process and a system for producing high yield of middle distillate products from heavy hydrocarbon feedstocks

According to this invention, there is provided a process and apparatus for catalytic cracking of various petroleum based heavy feed stocks in the presence of solid zeolite catalyst and high pore size acidic components for selective bottom cracking and mixtures thereof, in multiple riser type continuously circulating fluidized bed reactors operated at different severities to produce high yield of middle distillates, in the range of 50–65 wt % of fresh feed.
Owner:INDIAN OIL CORPORATION

Process and apparatus for improving flow properties of crude petroleum

A process for improving flow properties of crude may include processing a first crude stream, which may in turn include cracking the first crude stream with fresh catalyst to form a cracked stream and spent catalyst, and then mixed with an unprocessed second stream. The spent catalyst may be regenerated to form fresh catalyst, which may then be recycled. At least part of the cracked stream may be mixed with a second crude stream. A ratio of the second crude stream to the first crude stream may be between about 0.5:1 and about 9:1. A ratio of part of the cracked stream to add to the second crude stream may be selected to achieve a API gravity of at least about 18. The first crude stream may be heated and stripped before being cracked.
Owner:UOP LLC

Seat climate control system

A method for thermally conditioning a space adjacent a seat assembly includes activating a heating element positioned within the seat assembly beneath a seat covering. A fluid module that includes a fluid supply device and a thermoelectric element is activated to direct heated air from the fluid module to a space adjacent the seat assembly through a distribution system formed at least partially in the seat cushion. After a period of time, the heating element is deactivated.
Owner:GENTHERM INC

Heavy Oil and Bitumen Upgrading

Disclosed is a process for the upgrading and demetallizing of heavy oils and bitumens. A crude heavy oil and / or bitumen feed is supplied to a solvent extraction process 104 wherein DAO and asphaltenes are separated. The DAO is supplied to an FCC unit 106 having a low conversion activity catalyst for the removal of metals contained therein. The demetallized distillate fraction is supplied to a hydrotreater 110 for upgrading and collected as a synthetic crude product stream. The asphaltene fraction can be supplied to a gasifier 108 for the recovery of power, steam and hydrogen, which can be supplied to the hydrotreater 110 or otherwise within the process or exported. An optional coker 234 can be used to convert excess asphaltenes and / or decant oil to naphtha, distillate and gas oil, which can be supplied to the hydrotreater 220.
Owner:KELLOGG BROWN & ROOT LLC

Ceramic nanofibers containing nanosize metal catalyst particles and medium thereof

Ceramic nanofibers contain nanosize metal catalyst particles on the surface thereof. The catalyst-ceramic nanofibers when supported as by larger fibers form a medium that effectively catalyze various reactions as in fluid flow processes.
Owner:AKRON UNIV OF

Gasifier fluidization

A method of producing synthesis gas by introducing a feed material to be gasified into a gasification apparatus comprising at least one fluidized component operable as a fluidized bed, wherein the gasification apparatus is configured to convert at least a portion of the feed material into a gasifier product gas comprising synthesis gas; and maintaining fluidization of the at least one fluidized component by introducing a fluidization gas thereto, wherein the fluidization gas comprises at least one component other than steam. A system for producing synthesis gas is also provided.
Owner:RES USA LLC

Fluidized-bed reactor system

A fluidized-bed reactor comprising a chamber defining a hollow interior region and having a lower surface; a first input for introducing a contaminated gas into the hollow interior region; a plurality of catalyst nanoparticles within the hollow interior region and located on the lower surface, and a fluidizing input for introducing a fluidizing material into the hollow interior region, said fluidizing input having an outlet directed at the lower surface of the chamber, wherein the introduction of the fluidizing material directed at the lower surface fluidizes at least a portion of the catlyst nanoparticles located on the lower surface to create a gaseous dispersion of catalyst nanoparticles that reacts with the contaminated gas to produce a decontaminated gas.
Owner:GM GLOBAL TECH OPERATIONS LLC

Fluidized bed reactor systems and methods for reducing the deposition of silicon on reactor walls

Gas distribution units of fluidized bed reactors are configured to direct thermally decomposable compounds to the center portion of the reactor and away from the reactor wall to prevent deposition of material on the reactor wall and process for producing polycrystalline silicon product in a reactor that reduce the amount of silicon which deposits on the reactor wall.
Owner:CORNER STAR LTD

Integrated, high-efficiency processes for biomass conversion to synthesis gas

The present invention provides several variations for converting biomass, and other carbon-containing feedstocks, into syngas. Some variations include pyrolyzing or torrefying biomass in a devolatilization unit to form a gas stream and char, and gasifying the char. Other variations include introducing biomass into a fluid-bed gasifier to generate a solid stream and a gas stream, followed by a partial-oxidation or reforming reactor to generate additional syngas from either, or both, of the solid or gas stream from the fluid-bed gasifier. Hot syngas is preferably subjected to heat recovery. The syngas produced by the disclosed methods may be used in any desired manner, such as conversion to liquid fuels (e.g., ethanol).
Owner:RANGE FUELS INC

Advanced elevated feed distribution system for very large diameter RCC reactor risers

An FCC process and apparatus may include injecting hydrocarbon feedstock at different radial positions inside a riser. Multiple distributors may be used to position the openings for injecting feedstock at multiple radial positions. In addition, the openings may be away from riser peripheral wall and at different elevations along the riser wall or extending up from the riser bottom. The different opening positions introduce the feedstock across a larger area of the cross-section of the riser, which may improve the feedstock dispersion and mixing with catalyst. Improved mixing may increase conversion of the feedstock. Larger FCC units generally have greater riser diameters that may cause problems for feedstock dispersion and decrease the ability for the feedstock to mix with catalyst. Injecting the feedstock at multiple radial positions may improve feedstock dispersion in larger FCC units and increase mixing.
Owner:UOP LLC

Apparatus and process for the pyrolysis of agricultural biomass

An integrated combustion chamber and fluidized bed pyrolysis reactor. In one embodiment, the combustion chamber is cylindrical and the pyrolysis reactor is provided annularly about the combustion chamber with an annular wall that provides a common surface for heat transfer. A lift tube in fluid communication with the pyrolysis reactor is provided within the combustion chamber for circulating biomass and an inert fluidizable media upwardly through the lift tube; this advantageously increases heat transfer and leads to more rapid pyrolysis. The media and biomass exit the lift tube into either a freeboard area of the pyrolysis reactor or into a low density region of the fluidized bed. A condensable gaseous product is produced during pyrolysis that has economic value. The apparatus and process are especially well suited to the pyrolysis of low density agricultural biomass. The apparatus is compact and particularly well suited to mobile operation.
Owner:AGRI THERM

Chemical reactor with pressure swing adsorption

A chemical reaction is performed with separation of the product(s) and reactant(s) by pressure swing adsorption (PSA), using an apparatus having a plurality of adsorbers cooperating with first and second valve assemblies in a PSA module. The PSA cycle is characterized by multiple intermediate pressure levels between higher and lower pressures of the PSA cycle. Gas flows enter or exit the PSA module at the intermediate pressure levels as well as the higher and lower pressure levels, entering from compressor stage(s) or exiting into exhauster or expander stages, under substantially steady conditions of flow and pressure. The PSA module comprises a rotor containing the adsorbers and rotating within a stator, with ported valve faces between the rotor and stator to control the timing of the flows entering or exiting the adsorbers in the rotor. The reaction may be performed within a portion of the rotor containing a catalyst.
Owner:AIR PROD & CHEM INC

Fluid bed reactor having vertically spaced apart clusters of heating conduits

A fluid bed reactor is configured to process a reactive material to form one or more products. The reactor includes a reaction vessel defining a compartment configured to receive the reactive material. A first cluster of heating conduits at least partially occupies the compartment and extends over a first vertical extent within the compartment. A second cluster of heating conduits partially occupies the compartment and extends over a second vertical extent within the compartment. The first cluster of heating conduits is vertically below the second cluster of heating conduits and spaced apart therefrom by a first separation distance. Feedstock inlets are configured to introduce the reactive material into a region that is vertically between the first and second clusters of heating conduits. The heating conduits in the first cluster have a first thickness while the heating conduits in the second cluster have a second thickness. The first separation distance is at least as great as the smaller of the first and second thicknesses.
Owner:THERMOCHEM RECOVERY INT

Method and Apparatus for Preparation of Granular Polysilicon

A process for preparing granular polysilicon using a fluidized bed reactor is disclosed. The upper and lower spaces of the bed are defined as a reaction zone and a heating zone, respectively, with the height of the reaction gas outlet being selected as the reference height. The invention maximizes the reactor productivity by sufficiently providing the heat required and stably maintaining the reaction temperature in the reaction zone, without impairing the mechanical stability of the fluidized bed reactor. This is achieved through electrical resistance heating in the heating zone where an internal heater is installed in a space in between the reaction gas supplying means and the inner wall of the reactor tube, thereby heating the fluidizing gas and the silicon particles in the heating zone. The heat generated in the heating zone is transferred to the reaction zone by supplying the fluidizing gas at such a rate that the silicon particles can be intermixed between the reaction zone and the heating zone in a continuous, fluidized state.
Owner:KOREA RES INST OF CHEM TECH

Method and apparatus for producing superheated steam using heat from the incineration of waste material

PCT No. PCT / JP97 / 00573 Sec. 371 Date Jan. 12, 1998 Sec. 102(e) Date Jan. 12, 1998 PCT Filed Feb. 27, 1997 PCT Pub. No. WO97 / 32161 PCT Pub. Date Sep. 4, 1997According to the present invention, boiler water is pressurized so that its boiling point is set at approximately 200 DEG C. to 320 DEG C. The boiler water is heated in at least two stages. Thermal energy of gases containing chlorine compounds is used to heat the water to its boiling point. Thermal energy of gases which do not contain chlorine compounds is used to heat the water from its boiling point until superheated steam of a given temperature is generated. The heating which uses the thermal energy of gases containing chlorine compounds is accomplished using the thermal energy from the combustion of pyrolysis gases obtained from a pyrolysis means in which waste material is supplied into a chamber containing a fluidized bed medium which has been heated to at least 300 DEG C., and a pyrolytic reaction is induced. The heating which uses the thermal energy of gases which do not contain chlorine compounds is accomplished using the thermal energy obtained from a char combustion means to combust char in which a char mixture consisting of unpyrolyzed residue and fluidized bed medium removed from the pyrolysis means is fluidized by a stream of air, and the unpyrolyzed residue is combusted.
Owner:MITSUBISHI HEAVY IND LTD

Method and apparatus for preparation of granular polysilicon

A process for preparing granular polysilicon using a fluidized bed reactor is disclosed. The upper and lower spaces of the bed are defined as a reaction zone and a heating zone, respectively, with the height of the reaction gas outlet being selected as the reference height. The invention maximizes the reactor productivity by sufficiently providing the heat required and stably maintaining the reaction temperature in the reaction zone, without impairing the mechanical stability of the fluidized bed reactor. This is achieved through electrical resistance heating in the heating zone where an internal heater is installed in a space in between the reaction gas supplying means and the inner wall of the reactor tube, thereby heating the fluidizing gas and the silicon particles in the heating zone. The heat generated in the heating zone is transferred to the reaction zone by supplying the fluidizing gas at such a rate that the silicon particles can be intermixed between the reaction zone and the heating zone in a continuous, fluidized state.
Owner:KOREA RES INST OF CHEM TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products