Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

285 results about "Phosphorus pentachloride" patented technology

Phosphorus pentachloride is the chemical compound with the formula PCl₅. It is one of the most important phosphorus chlorides, others being PCl₃ and POCl₃. PCl₅ finds use as a chlorinating reagent. It is a colourless, water-sensitive and moisture-sensitive solid, although commercial samples can be yellowish and contaminated with hydrogen chloride.

Preparation method of lithium hexafluorophosphate

The invention relates to a preparation method of lithium hexafluorophosphate. The preparation method comprises the following steps of: (1) distilling to obtain hydrogen fluoride liquid of which the purity is over 99.99 weight percent; (2) reacting the high-purity hydrogen fluoride liquid with phosphorus pentachloride to obtain mixed gas of the phosphorus pentafluoride and hydrogen chloride; (3) introducing the mixed gas of the phosphorus pentachloride and the hydrogen chloride into hydrogen fluoride and lithium fluoride, reacting at a certain temperature and under certain pressure to obtain solution of lithium hexafluorophosphate, exhausting hydrogen chloride gas at regular time, and absorbing by using water to prepare byproduct hydrochloric acid; and (4) crystallizing and separating, namely filtering the solution of lithium hexafluorophosphate, delivering filtrate into a crystallizing slot, separating the lithium hexafluorophosphate out at the temperature of between -70 and 80 DEG C, filtering, and performing primary drying and secondary drying to obtain a lithium hexafluorophosphate product, wherein the residual hydrogen fluoride gas is displaced by nitrogen. The preparation method has readily available raw materials and is easy to operate, the purity of the obtained lithium hexafluorophosphate product is over 99.9 percent, the moisture is lower than 10ppm, and the production requirements of lithium ion electrolytic cells are met.
Owner:MORITA NEW ENERGY MATERIALS ZHANGJIAGANG CO LTD

Methods for preparing phosphorus pentafluoride gas and preparing lithium hexafluorophosphate using the gas

A preparation method of phosphorus pentafluoride gas comprises a step of causing phosphorus pentachloride to react with anhydrous hydrogen fluoride, wherein, the reaction occurs in the presence of a solvent. A preparation method of lithium hexaflourophosphate comprises a contact reaction between solid lithium fluoride and phosphorus pentafluoride gas, wherein the phosphorus pentafluoride gas is prepared by the method of the invention. Compared with the preparation method of the lithium hexaflourophosphate with the phosphorus pentafluoride gas as the raw material in the prior art, the phosphorus pentafluoride gas prepared by the preparation method of the invention has higher purity and lower cost. The yield of the lithium hexaflourophosphate prepared by the method of the invention is higher than 93%, and the purity thereof is up to 99.95%.
Owner:BYD CO LTD

Method for producing lithium hexafluorophosphate

The invention relates to a method for producing lithium hexafluorophosphate. The method comprises the following steps: (1), rectifying and purifying industrial anhydrous hydrogen fluoride and removing moisture and heavy metal impurities therein; (2), enabling the rectified anhydrous hydrogen fluoride and phosphorus pentachloride to react to prepare the mixed gas of phosphorus pentafluoride and chlorine hydride; (3), dissolving high-pure lithium fluoride in an anhydrous hydrogen fluoride solution to form an anhydrous hydrogen fluoride solution containing the lithium fluoride; (4), cooling and guiding the mixed gas of the phosphorus pentafluoride and the chlorine hydride to the anhydrous hydrogen fluoride solution containing the lithium fluoride, reacting, crystallizing, separating and drying to obtain a pure lithium hexafluorophosphate product; and (5), continuously guiding the unreacted gas of the phosphorus pentafluoride and the chlorine hydride after a reaction to the other anhydrous hydrogen fluoride solution containing the lithium fluoride and continuously reacting to obtain a lithium hexafluorophosphate finished product. The invention uses the industrial anhydrous hydrogen fluoride, the phosphorus pentachloride and the high-pure lithium fluoride as raw materials to prepare the lithium hexafluorophosphate product, has rich raw material resources, low production cost, high reaction rate, high product quality and thorough reaction and can realize semi-continuous production.
Owner:DO FLUORIDE CHEM CO LTD

Preparation method of lithium hexafluorophosphate

The invention provides a preparation method of a lithium hexafluorophosphate, which comprises the following steps: firstly, reacting a phosphorus pentachloride with an anhydrous hydrogen fluoride to form mixed liquid of the phosphorus pentachloride and the anhydrous hydrogen fluoride; secondly, preparing anhydrous hydrogen fluoride solution of lithium fluoride; and finally, adding the anhydrous hydrogen fluoride solution of the lithium fluoride into the mixed liquid of the phosphorus pentachloride and the anhydrous hydrogen fluoride, and sequentially performing reaction, crystallization, separation and drying to obtain a pure lithium hexafluorophosphate product. The preparation method of the invention has the advantages of mild reaction, high safety and purity of the lithium hexafluorophosphate product of over 99.9 percent; and the mother liquor can be reclaimed and reused so that the cost is reduced.
Owner:DO FLUORIDE CHEM CO LTD

Synthesis method for pyridone

InactiveCN104030972AOptimize the synthetic routeReduce manufacturing costOrganic chemistrySynthesis methodsMorpholine
The invention discloses a synthesis method for pyridone, and relates to the technical field of synthesis of a heterocyclic compound containing three heterocyclic rings one of which takes nitrogen and oxygen as the only one heteroatom. The synthesis method comprises the following steps: reacting tetrahydrofuran, ursol, triethylamine and 5-chlorin valeryl chloride which are taken as raw materials, and after the reaction, adding potassium tert-butoxide for reacting again, thereby obtaining a monomer 1 after reaction; reacting the monomer 1 with phosphorus pentachloride in a dichloromethane solvent, thereby obtaining a monomer 2 after reaction; reacting the monomer 2 with morpholine to obtain a final product I. The synthesis method has the advantages that the raw materials are cheap and easily available, and the reaction process is greatly shortened in comparison with that of the prior art, and the synthesis method is mild and safe in reaction conditions, good in reaction reproducibility, low in cost, and high in efficiency, and has simple and easy operations in the reaction.
Owner:河北序能生物技术有限公司

Preparation method of lithium hexafluorophosphate of lithium ion battery electrolyte

The invention relates to the technical field of lithium batteries, in particular to a preparation method of lithium hexafluorophosphate of lithium ion battery electrolyte. The preparation method is characterized in that hydrogen fluoride, phosphorus pentachloride and lithium fluoride, which are adopted as raw materials, are refined and react under the conditions of proper temperature, pressure and time, and then high-purity lithium hexafluorophosphate is prepared by adopting the technical route of low-temperature crystallization and vacuum drying. The raw materials used in the method are cheap and easy to obtain; the production cost is low; the technological process is simple; the operation is convenient to control; excellent economical and social values in extensive use of energy-saving environment-friendly new energies are achieved; moisture, free acid and other impurities in a product are effectively reduced, so that the product yield is high, and the product quality is high; and the purity of the lithium hexafluorophosphate product reaches 99.95 percent, so as to satisfy the production requirements of the lithium ion batteries.
Owner:DONGGUAN DONGJUN NEW ENERGY TECH

N-P flameresistant material and preparation method thereof and application in textiles

The invention discloses an N-P flameresistant material and a preparation method thereof and application in textiles. The chemical name of a flame retardant of the material is hexa(1-oxo-phospha-2,6,7-trioxabicyclo[2,2,2]octane-4-methylenedioxy)cyclotriphosphazene (HCPPA); the preparation method of the material comprises the steps of synthesizing hexachlorocyclotriphosphazene (HCPP) by reacting ammonium chloride with phosphorus pentachloride, wherein a catalyst is pyridine and ZnO; then synthesizing 1-oxo-phospha-4-hydroxymethyl-2,6,7-trioxabicyclo[2,2,2]octane (PEPA) by reacting pentaerythritol with phosphorus oxychloride; finally synthesizing the HCPPA by reacting the HCPP with the PEPA. According to the preparation method, NaH is used as a catalyst, so that the synthesis reactions can be performed quickly, the reaction time is greatly shortened, and the product yield is improved. When the N-P flame retardant is used for retarding a flame of a cotton fabric, high limit oxygen index and char yield are achieved, and the wash durability is good.
Owner:HUNAN INSTITUTE OF ENGINEERING

Preparation method of intermediate cyclopropyl acetylene of anti-AIDS (acquired immune deficiency syndrome) drug efavirenz

The invention discloses a preparation method of intermediate cyclopropyl acetylene of anti-AIDS (acquired immune deficiency syndrome) drug efavirenz. The preparation method comprises the steps of performing a reaction in an organic solvent by taking cyclopropyl methyl ketone as a raw material and phosphorus pentachloride as a chlorinating agent by the action of a catalyst to generate alpha, alpha-dichloroethyl cyclopropane and phosphorus oxychloride, performing decompressed rectification to remove phosphorus oxychloride, removing part of hydrogen chloride from alpha, alpha-dichloroethyl cyclopropane by the action of triethylamine to generate alpha-chlorovinyl cyclopropane, and further removing part of hydrogen chloride by the action of strong base to generate cyclopropyl acetylene. Phosphorus oxychloride is removed by the decompressed rectification; the generation of much phosphorus wastewater due to hydrolysis of phosphorus oxychloride in ice water is avoided; recovered phosphorus oxychloride can be comprehensively utilized by simple rectification; waste gas, wastewater and industrial residue are reduced; the cost is lowered; cyclopropyl acetylene is prepared from alpha-chlorovinyl cyclopropane via a reaction rectification technology; and the method has the advantages of high conversion rate, good selectivity, low energy consumption and the like, and is suitable for industrialproduction.
Owner:JIANGSU YUXIANG CHEM

Preparation method of 2, 6-dichlorobenzaldehyde

The invention provides a preparation method of 2, 6-dichlorobenzaldehyde and relates to the technical field of chemical synthesis production. The preparation method of the invention comprises the following steps of: performing a chlorination reaction on 2,6-dichlorotoluene and chlorine under a reaction condition of 50-250 DEG C in the catalytic effect of phosphorus pentachloride and light, and performing rectification to prepare 2,6-dichloro dchlorobenzyl; adding the 2,6-dichloro dchlorobenzyl, an acidic solvent and zinc chloride into a hydrolysis nitrilation kettle, and performing a hydrolysis reaction under a heating reflux condition to prepare the 2, 6-dichlorobenzaldehyde. The preparation method provided by the invention has the advantages of ensuring easy production control, little material consumption and low production cost, reducing the generation of solid waste and reducing the emission of nitrogen-containing nitroso group waste, thereby being an energy-saving, emission-reducing, environment-friendly, industrial, practical and clean production process.
Owner:永椿化工新材料有限公司

Preparation method of 4,6-dichloropyrimidine

The invention discloses a preparation method of 4,6-dichloropyrimidine. The preparation method comprises the following steps: 1) mixing 4,6-dyhydroxy pyrimidine, phosphorus oxychloride and phosphorus pentachloride, controlling the temperature to be 50-110 DEG C, reacting, stopping the reaction until the content of 4,6-dyhydroxy pyrimidine is lower than 1%, cooling a reactant mixture to a temperature lower than 30 DEG C; or, mixing 4,6-dyhydroxy pyrimidine with phosphorus oxychloride, controlling the temperature to be 50-110 DEG C, adding phosphorus pentachloride batch by batch, reacting, stopping the reaction until the content of 4,6-dyhydroxy pyrimidine is lower than 1%, cooling the reactant mixture to a temperature lower than 30 DEG C; 2) carrying out reduced pressure distillation on the reactant mixture to recover phosphorus oxychloride; and 3) purifying the reactant mixture from which phosphorus oxychloride is recovered in step 2), thus obtaining 4,6-dichloropyrimidine. Namely, the invention provides the method for preparing 4,6-dichloropyrimidine without utilizing an organic alkali, by which, a tedious process of recovering and recycling the organic alkali is avoided; phosphorus oxychloride can be recycled, therefore the waste of resources is avoided; and furthermore, a large amount of phosphorus-containing waste solution and waste slag is not likely to generate.
Owner:CHONGQING UNISPLENDOUR CHEM

Preparation method of Ni2P-supported Ni-based catalyst, obtained catalyst and application thereof

ActiveCN108796552AReduce usageAvoid high temperature preparationElectrodesWhite PhosphorusPhosphorus pentachloride
The invention discloses a preparation method of a Ni2P-supported Ni-based catalyst, the obtained Ni2P-supported Ni-based catalyst and application thereof. Low temperature phosphating can be successfully achieved by using plasmas for processing elemental nickel, nickel hydroxides and nickel oxides, and Ni2P is obtained. Meanwhile, non-toxic red phosphorus is used as a phosphorus source in the preparation method, so that using of high-toxicity phosphorus (such as PH3) or white phosphorus or phosphorus pentachloride is avoided, and using of expensive organic reagents such as P(SiMe3)3 and tri-n-octylphosphine (TOP) is avoided. In addition, the Ni2P-supported Ni-based catalyst obtained through the preparation method can be directly used for hydrogen evolution through electrolysis of water, sothat using of binding agents in traditional granular type catalysts is avoided.
Owner:PEKING UNIV

Method for preparing 2, 6-dichlorobenzonitrile

The invention discloses a method for preparing 2, 6-dichlorobenzonitrile, and relates to the technical field of production of chemically synthesized 2, 6-dichlorobenzonitrile. According to the method, 2, 6-dichlorotoluene is used as a starting material and chlorinated to prepare 2, 6-benzylidene chloride, the 2, 6-benzylidene chloride is hydrolyzed and quaternized to prepare a 2, 6-dichlorobenzonitrile crude product, and the 2, 6-dichlorobenzonitrile crude product is refined to obtain a 2, 6-dichlorobenzonitrile fine product. Production is easily controlled, raw material consumption is less, production cost is low, solid waste is decreased, emission of nitrogenous nitroso-group waste gas is reduced, and the method is an energy-saving, emission-reduction and environment-friendly industrial practical cleaning production technique.
Owner:永椿化工新材料有限公司

Preparation method of phosphonitrile chloride catalyst, and application of phosphonitrile chloride catalyst in preparation of alkoxy-terminated polysiloxane

The invention discloses a preparation method of a phosphonitrile chloride catalyst, and an application of the phosphonitrile chloride catalyst in the preparation of alkoxy-terminated polysiloxane. Thepreparation method comprises the following steps: purging a reaction device with nitrogen to achieve preheating treatment, opening the reaction device to remove condensate water, and sequentially infiltrating the reaction device with dichloromethane and tetrachloroethane; mixing and uniformly stirring tetrachloroethane and ammonium chloride to prepare a tetrachloroethane solution of ammonium chloride for later use; adding phosphorus pentachloride into the reaction device, slowly raising the temperature to 140-160 DEG C under the protection of nitrogen, then dropwise adding the prepared tetrachloroethane solution of ammonium chloride, carrying out a reflux reaction after the drop-by-drop addition is completed, then raising the temperature to 170-175 DEG C, continuously carrying out the reflux reaction, and cooling the reaction device to room temperature after the reaction is completed; and adding anisole into the reaction solution, and performing stirring under a vacuum condition to achieve uniform mixing in order to obtain target crystals which are the phosphonitrile chloride. The prepared phosphonitrile chloride has a high catalytic activity; and when the phosphonitrile chlorideis used for preparing alkoxy-terminated polysiloxane, a polymer with an excellent storage stability can be effectively prepared.
Owner:新纳奇材料科技江苏有限公司
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products