Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

3772 results about "Phase control" patented technology

Dimming Circuit for Led Lighting Device With Means for Holding Triac in Conduction

The invention disclosed herein is a dynamic dummy load to allow a phase control dimmer to be used with LED lighting. The invention includes providing a dynamic dummy load to provide a load to the dimmer when the LED electronics do not provide sufficient load due to start up issues or ringing in the circuit, the dynamic dummy load providing a reduced flow of current when the LED and its converter electronics provide sufficient current draw from the dimmer. The system generally includes a power source electrically connected to a phase control dimmer, the phase control dimmer electrically connected to converter circuitry to convert the AC power output of the dimmer to DC power output for powering the LED lighting, a dynamic dummy load electrically connected in parallel with the converter circuitry, the dummy load varying its current draw in response to operation of the converter circuitry.
Owner:DYNAMIC LED TECH LLC

Closed loop phase control between distant points

Methods for compensating for phase shifts of a communication signal. The methods involve determining a first reference signal (Vref-1) at a first location along a transmission path and a second reference signal (Vref-2) at a second location along the transmission path. Vref-2 is the same as Vref-1. At the first location, a first phase offset is determined using Vref-1 and a first communication signal. At the second location, a second phase offset is determined using Vref-2 and a second communication signal. A phase of a third communication signal is adjusted at the second location using the first and second phase offsets to obtain a modified communication signal. The first, second, and third communication signals are the same communication signal obtained at different locations along the transmission path.
Owner:HARRIS CORP

Controllable-load circuit for use with a load control device

A load control device for controlling the amount of power delivered from an AC power source to an electrical load is operable to conduct enough current through a thyristor of a connected dimmer switch to exceed rated latching and holding currents of the thyristor. The load control device comprises a controllable-load circuit operable to conduct a controllable-load current through the thyristor of the dimmer switch. The load control device disables the controllable-load circuit when the phase-control voltage received from the dimmer switch is a reverse phase-control waveform. When the phase-control voltage received from the dimmer switch is a forward phase-control waveform, the load control device is operable to decrease the magnitude of the controllable-load current so as to conduct only enough current as is required in order to exceed rated latching and holding currents of the thyristor.
Owner:LUTRON TECH CO LLC

Digital load control system providing power and communication via existing power wiring

A load control system comprises a load control device for controlling an electrical load receiving power from an AC power source, and a controller adapted to be coupled in series between the source and the load control device. The load control system may be installed without requiring any additional wires to be run, and is easily configured without the need for a computer or an advanced commissioning procedure. The load control device receives both power and communication over two wires, and the controller generates a phase-control voltage that has at least one timing edge in each half-cycle, and transmits digital messages by modulating a timing edge of the phase-control voltage relative to a reference edge. The controller may be operable to receive inputs from a plurality of different input devices, and the load control device may be operable to control a plurality of different loads.
Owner:LUTRON TECH CO LLC

Catalyst and process for direct catalytic production of hydrogen peroxide, (H2O2)

A particulate supported noble metal phase-controlled catalyst material having 5-1000 mum surface area of 50-500 m2 / gm is provided for use in direct catalytic production of hydrogen peroxide (H2O2) product from hydrogen and oxygen-containing feedstreams. The catalyst is made by depositing phase controlled crystals of a noble metal such as palladium on a suitable particulate support material such as carbon black, by utilizing a precursor solution of the metal and a suitable control ionic polymer having molecular weight of 300-8000 such as sodium polyacrylate in a selected metal to polymer molar ratio of 1:0.1 to 1:10, which procedure provides desired phase control of the noble metal atoms to form widely dispersed minute noble metal crystals on the support material. The invention includes methods for making the catalyst, and also a process for utilizing the catalyst to directly produce high yields of hydrogen peroxide (H2O2) product from hydrogen and oxygen-containing gaseous feedstreams.
Owner:BORAL IP HLDG

Bi-directional inductive power transfer

A method, apparatus, and system are provided which enables the control of contactless power transfer in an inductive power transfer system using a phase control technique. The method comprises adjusting the phase of a secondary-side converter output voltage with respect to that of a primary-side converter. The magnitude of power transfer is determined by the relative phase angle, and the direction of power transfer is determined by whether the secondary converter output voltage leads or lags the input converter voltage, thereby enabling bi-directional power transfer between the primary and secondary sides of the system. According to alternative embodiments, the method may also be used for uni-directional power transfer only, and / or the secondary converter may be operated to maintain a constant relative phase angle.
Owner:AUCKLAND UNISERVICES LTD

Digital load control system providing power and communication via existing power wiring

A two-way load control system comprises a power device, such as a load control device for controlling an electrical load receiving power from an AC power source, and a controller adapted to be coupled in series between the source and the power device. The load control system may be installed without requiring any additional wires to be run, and is easily configured without the need for a computer or an advanced commissioning procedure. The power device receives both power and communication over two wires. The controller generates a phase-control voltage and transmits a forward digital message to the power device by encoding digital information in timing edges of the phase-control voltage. The power device transmits a reverse digital message to the controller via the power wiring.
Owner:LUTRON TECH CO LLC

Electrosurgical methods and devices employing phase-controlled radiofrequency energy

This disclosure relates generally to electrosurgical methods and devices. In one embodiment, an electrosurgical device is provided suitable for applying phase controlled RF energy to a treatment site. The electrosurgical device comprises a multi-electrode electrosurgical probe electrically coupled to a plurality of RF generators. Also provided are methods of use of such an electrosurgical device, as well as other electrosurgical devices. The methods and devices disclosed herein find utility, for example, in the field of medicine.
Owner:ENDYMED MEDICAL

AC-powered, microprocessor-based, dimming LED power supply

A dimmable, light-emitting diode (LED) power supply adapted to provide a direct current (DC), constant current (“constant current source”) from a conventional, phase-controlled 120 VAC, 60 Hz power source is disclosed. The constant current source of the present invention utilizes two processes to control dimming. In a first process, the phase angle of the input voltage is used to control the duty cycle of a line frequency pulse width modulation (PWM). In a second process, a proportional-current limit adjustment is used to control the average current to the LED during the ON time of the line frequency by PWM. As a result, at relatively low phase angles, peak currents can be lowered, reducing flicker and improving the audible noise levels generated by the circuit.
Owner:TEXAS INSTR INC

Multiphase power regulator with load adaptive phase control

Disclosed is a power regulator for providing precisely regulated power to a microelectronic device such as a microprocessor. Improved power regulation is accomplished by optimizing the power efficiency of the power regulator. In particular, in a multiphase system, the number of active phases is increased or decreased to achieve optimum power efficiency. The multiphase voltage regulator adapts the operating mode to maximize efficiency as the load current demand of the load device changes by adjusting the number of active phases to maximize efficiency. The total value of current provided by the regulator and the total number of active phases is determined, the total number of active phases is compared with the number of active phases required to provide the total value of current at maximum efficiency; and the number of active phases is adjusted to provide the total value of current at maximum efficiency. A current sense circuit senses the current at each phase, a summing circuit coupled to the output of the current sense circuit provides the total current value of all the measured phases, a circuit coupled to the output of the summing circuit provides the time averaged total current value to a threshold detecting circuit that determines the number of phases at which the voltage regulator should be operating for maximum efficiency, and a circuit for comparing the number of phases that are operating to the number of phases at which the voltage regulator should be operating adjusts the number of active phases to the number of phases at which the voltage regulator should be operating for maximum efficiency.
Owner:INFINEON TECH AUSTRIA AG

High linearity doherty communication amplifier with phase control

A high linearity Doherty power amplifier with phase delay generation and control via passive and active components. In one embodiment, phase delay generation and control is implemented by an active phase shifter comprising a lower differential unit for generating a first differential output signal, an upper differential unit for generating a second differential output signal, and a phase control unit for tuning a phase difference between the first and second differential output signals within a phase tolerance. In addition, to improve efficiency and linearity characteristics, the power amplifier receives a voltage control signal to bias a supplemental amplifier so that the power amplifier operates in a Doherty mode in a low output power range and in a non-Doherty mode in a high output power range.
Owner:AVAGO TECH WIRELESS IP SINGAPORE PTE +1

Reconfigurable parasitic control for antenna arrays and subarrays

InactiveUS20050088358A1Reduce decreaseScan angles can be increasedLogperiodic antennasAntenna arraysEngineeringArray element
Reconfiguration of parasitically controlled elements in a phased array is used to expand the range of operational functions. Embedded array elements can be frequency tuned, and bandwidth can be improved by using reconfiguration to broaden the bandwidth of the embedded elements. For high gain arrays, beam squint can be a limiting factor on instantaneous bandwidth. Reconfiguration can alleviate this problem by providing control of the element phase centers. Scan coverage can be improved and scan blindness alleviated by controlling the embedded antenna patterns of the elements as well as by providing control of the active impedance as the beam is scanned. Applying limited phase control to the elements themselves can alleviate some of the complexity of the feed manifold. A presently preferred method of designing reconfigurable antennas is to selectively place controlled parasitic elements in the aperture of each of the antenna elements in the phased array. The parasitic elements can be controlled to change the operational characteristics of the antenna element. The parasitic elements are controlled by either switching load values in and out that are connected to the parasitic elements or are controlled by applying control voltages to variable reactance circuits containing devices such as varactors. The parasitic elements can be controlled by the use of a feedback control subsystem that is part of the antenna system which adjusts the RF properties of the parasitic components based on some observed metric. The controllable characteristics include directivity control, tuning, instantaneous bandwidth, and RCS.
Owner:TOYON RES CORP

Implantable medical device for restoration of neurological function impaired by peripheral neuropathy

An implantable device for treating a patient using sensory substitution includes a wearable article in which are disposed one or more sensors for detecting the phase of the gait cycle of the patient, a controller for receiving signals from the sensors indicative of the phase of the gait, and one more stimulators for stimulating the patient based on signals from the controller that are issued in response to the sensor signals.
Owner:BIOQ

RF Power Amplifier Controller Circuit Including Calibrated Phase Control Loop

An RF power amplifier system comprises an amplitude control loop and a phase control loop. The amplitude control loop adjusts the supply voltage to the power amplifier based upon the amplitude correction signal indicating the amplitude difference between the amplitude of the input signal and an attenuated amplitude of the output signal. The phase control loop adjusts the phase of the input signal based upon a phase error signal indicating a phase difference between phases of the input signal and the output signal. The phase control loop may comprise one or more variable phase delays introducing a relative phase delay to allow the phase differences between the input and output signals of the PA circuit to be within a range compatible with a phase comparator generating the phase error signal, and a low frequency blocking module that removes the larger extent, lower frequency components of the phase error signal.
Owner:QUANTANCE

Modular, high energy, widely-tunable ultrafast fiber source

A modular, compact and widely tunable laser system for the efficient generation of high peak and high average power ultrashort pulses. Modularity is ensured by the implementation of interchangeable amplifier components. System compactness is ensured by employing efficient fiber amplifiers, directly or indirectly pumped by diode lasers. Peak power handling capability of the fiber amplifiers is expanded by using optimized pulse shapes, as well as dispersively broadened pulses. Dispersive broadening is introduced by dispersive pulse stretching in the presence of self-phase modulation and gain, resulting in the formation of high-power parabolic pulses. In addition, dispersive broadening is also introduced by simple fiber delay lines or chirped fiber gratings, resulting in a further increase of the energy handling ability of the fiber amplifiers. The phase of the pulses in the dispersive delay line is controlled to quartic order by the use of fibers with varying amounts of waveguide dispersion or by controlling the chirp of the fiber gratings. After amplification, the dispersively stretched pulses can be re-compressed to nearly their bandwidth limit by the implementation of another set of dispersive delay lines. To ensure a wide tunability of the whole system, Raman-shifting of the compact sources of ultrashort pulses in conjunction with frequency-conversion in nonlinear optical crystals can be implemented, or an Anti-Stokes fiber in conjunction with fiber amplifiers and Raman-shifters are used. A particularly compact implementation of the whole system uses fiber oscillators in conjunction with fiber amplifiers. Additionally, long, distributed, positive dispersion optical amplifiers are used to improve transmission characteristics of an optical communication system. Finally, an optical communication system utilizes a Raman amplifier fiber pumped by a train of Raman-shifted, wavelength-tunable pump pulses, to thereby amplify an optical signal which counterpropogates within the Raman amplifier fiber with respect to the pump pulses.
Owner:IMRA AMERICA

Semi-integrated designs for external cavity tunable lasers

ActiveUS20050213618A1Laser detailsLaser optical resonator constructionExternal cavity diode laserPhase control
Semi-integrated external cavity diode laser (ECDL) designs including integrated structures comprising a gain section, phase control section, and optional modulator section. Each integrated structure includes a waveguide that passes through each of the sections. A mirror is defined in the structure to define one end of a laser cavity. A reflective element is disposed generally opposite a rear facet of the gain section, forming an external cavity therebetween. A tunable filter is disposed in the external cavity to effectuate tuning of the laser. During operation, a modulated drive signal is provided to the phase control section. This modulates an optical path length of the laser cavity, which produces an intensity (amplitude) modulation in the laser output. A detector is employed to produce a feedback signal indicative of the intensity modulation that is used for tuning the laser in accordance with a wavelength locking servo loop. Upon passing through the modulator section, an optical signal is modulated with data.
Owner:NEOPHOTONICS CORP

Voltage boosting circuit and method

A voltage boosting circuit, boosting power supply unit and methods thereof are provided. A boosting power supply unit includes a boosting circuit having a small number of externally-mounted capacitors, which generates stepped-up and stepped-down boosted voltages through charging and pumping under two-phase control, so that the simultaneous output of the stepped-up voltage and the stepped-down voltage, the output of only the stepped-up voltage, the output of only the stepped-down voltage, and the cut-off of the output of the stepped-up voltage and the stepped-down voltage can be controlled on the basis of the phase control signal generated from the enable signals of which the logic states are changed in accordance with an amount of load.
Owner:SAMSUNG ELECTRONICS CO LTD

Phase controlled dimming LED driver system and method thereof

The present invention relates to providing an improved phase controlled dimming LED driver circuitry, system and a method thereof, which is configured to enable dimming intensity of light generated by a light source, said phase controlled dimming driver circuitry being connected to a phase control dimmer that provides to it a regulated alternating current (AC) signal, wherein said phase controlled dimming driver circuitry does not include a microprocessor and pulse width modulates its output current, provided to said light source, at a frequency unrelated to the AC signal frequency. Further, the phase controlled dimming driver circuitry applies amplitude modulation (AM) and pulse width modulation (PWM) substantially simultaneously to the output current provided to the light source.
Owner:SAVANT TECH LLC

Charging an input capacitor of a load control device

A load control device for controlling the amount of power delivered to an electrical load may include a rectifier circuit configured to receive a phase-control voltage and produce a rectified voltage. A power converter may be configured to receive the rectified voltage at an input and generate a bus voltage. An input capacitor may be coupled across the input of the power converter. The input capacitor may be adapted to charge when the magnitude of the phase control voltage is approximately zero volts. The power converter may be configured to operate in a boost mode, such that the magnitude of the bus voltage is greater than a peak magnitude of the input voltage. The power converter may be configured to operate in a buck mode to charge the input capacitor from the bus voltage when the magnitude of the phase-control voltage is approximately zero volts.
Owner:LUTRON TECH CO LLC

Method and apparatus implemented in an automatic sampling phase control system for digital monitors

An automatic sampling control system for digital monitors. A clock generation circuit generates a sampling clock. A phase controller modifies the phase of the sampling clock by a phase amount. An ADC samples a frame of an analog display signal to generate digital samples. A value which is a function of the samples is generated. The function generally generates a larger value with correspondingly large sample values. The phase amount is modified for successive image frames until a maximum function value is generated. When successive image frames do not change substantially in image content, the phase amount represents the optimal phase change for the sampling clock. If the image content is changing substantially, the phase adjustment may be disabled.
Owner:HANGER SOLUTIONS LLC

Method For Dimming Non-Linear Loads Using An AC Phase Control Scheme And A Universal Dimmer Using The Method

A universal dimmer for adjusting the output from linear and non-linear loads using an AC power control method incorporating phase angle control is disclosed which has a switching element, a load current measurement element for measuring the current passing through the load, a current evaluator for evaluating the current passing through the load, and a firing angle adjuster such as a regulator or transforming element. The current passing through the load is measured and evaluated so as to direct the firing angle adjuster to adapt firing angles of the switching element in such way that a load RMS current is proportional to an input signal to the dimmer, regardless of the type of load being controlled. The universal dimmer is capable of dimming the output from linear and non-linear loads using a variable power delivery method using AC power line phase angle control to vary output power of linear and non-linear loads, ranging from regular linear loads such as incandescent lamps, to non-linear loads, such as LED lamps, compact fluorescent lights (CFLs'), etc. as well as linear loads with large phase shift, that is, inductive and capacitive loads.
Owner:CENCUR MARKO

Medical device for restoration of neurological function impaired by peripheral neuropathy

A device for treating a patient using sensory substitution includes a wearable article in which are disposed one or more sensors for detecting the phase of the gait cycle of the patient, a controller for receiving signals from the sensors indicative of the phase of the gait, and one more stimulators for stimulating the patient based on signals from the controller that are issued in response to the sensor signals.
Owner:BIOQ

Phase control in the capillary evaporators

A capillary pump two phase heat transport system that combines the most favorable characteristics of a capillary pump loop (CPL) with the robustness and reliability of a loop heat pipe (LHP). Like a CPL, the hybrid loop has plural parallel evaporators, plural parallel condensers, and a back pressure flow regulator. Unlike CPLs, however, the hybrid system incorporates elements that form a secondary loop, which is essentially a LHP that is co-joined with a CPL to form an inseparable whole. Although secondary to the basic thermal management of the system thermal bus, the LHP secondary loop portion of the system provides for important operational functions that maintain healthy, robust and reliable operation. The LHP secondary loop portion provides a function of fluid management during start-up, steady state operation, and heat sink / heat source temperature and power cycling.
Owner:NORTHROP GRUMMAN SYST CORP

Phase controlled dimming LED driver system and method thereof

The present invention relates to providing an improved dimming driver circuitry, system and a method thereof. The dimming driver circuitry is configured to enable dimming intensity of light generated by one or more light sources, the dimming driver circuitry being connected to a dimmer that provides to it an alternating current (AC) signal. The dimming driver circuitry may in some examples not include a processing unit. Additionally or alternatively, the dimming driver circuitry may in some examples apply amplitude modulation to the output current provided to the one or more light sources. In some of these examples, the dimming driver circuitry may begin to apply at substantially the same time pulse width modulation and amplitude modulation to the output current provided to the one or more light sources. Additionally or alternatively, the dimming driver circuitry may in some examples include at least one linear dimming control pin connected to at least one capacitor and / or resistor configured to fine-tune capacitance and / or resistance.
Owner:SAVANT TECH LLC

Phase controlled oscillator circuit with input signal coupler

An oscillating signal in an oscillator is caused to phase shift toward the phase of an input signal coupled to the oscillating signal. The resonant frequency of the oscillator is about equal to an integer multiple of the frequency of the input signal. The input signal may be generated in a pulse generator to have an input pulse duration less than or equal to that of the oscillating signal. The oscillator circuit may be used as a filter to filter pulse width variations or to filter jitter from a reference clock. The oscillator circuit may also serve as a buffer by amplifying the input signal. Phase interpolation can be obtained by coupling at least one input signal with at least one oscillating signal.
Owner:RAMBUS INC

Method and apparatus for load sharing in a multiphase switching power converter

A plurality of single-phase synchronizing converter automatically synchronize on a peer-to-peer basis. Each synchronizing converter is configured as a DC-to-DC converter. The synchronizing converters operate in parallel as a multi-phase converter. A common bus between the synchronizing converters includes a sync line and a common phase control line. Proper phasing automatically occurs when power is applied, and the phasing changes automatically as converters are added or removed. When the system powers up, the converters arbitrate for phase position. The phasing positions are random, but the phasing is relatively symmetrical regardless of the number of phases. In one embodiment, a hot-swappable converter module can be plugged into any location of a parallel multiphase bus to produce a common output voltage. When an additional module is plugged in, the converters readjust their phases to maintain phase symmetry. In one embodiment, each module shares a substantially equal portion of the output load.
Owner:MICROSEMI CORP ANALOG MIXED SIGNAL GRP LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products