Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

68 results about "Metal Nanocrystals" patented technology

Monodisperse noble metal nanocrystals

Nanoparticle compositions of noble metals, and methods of making them, are described. The nanoparticle compositions are made by reacting a salt or complex of a noble metal, such as Au, Ag, Cu or Pt, with a weak ligand, and a reducing agent, in a single liquid phase. The noble metal is typically provided as a halide or carboxylate. The ligand is preferably a fatty acid or aliphatic amine. The reducing agent is preferably a borohydride reagent, hydrazine, or a mixture thereof. Nanocrystals in the size range of 1 nm to 20 nm are produced, and can be made in substantially monodisperse form.
Owner:THE BOARD OF TRUSTEES OF THE UNIV OF ARKANSAS

Semiconductor nanocrystal quantum dots and metallic nanocrystals as UV blockers and colorants for suncreens and/or sunless tanning compositions

The present invention is directed to photostable sunscreen and/or artificial tanning compositions including quantum dot nanocrystals of a material selected from semiconductor nanocrystals, modified semiconductor nanocrystals, multicomponent semiconductor/semiconductor nanocrystals, and hybrid semiconductor/metal nanocrystals, the quantum dot nanocrystals having an absorption band gap occurring at wavelengths higher than 400 nm whereby the quantum dot nanocrystals have substantial broadband absorption properties of ultraviolet light at wavelengths across the range of both UV-A (320-400 nm) and UV-B (280-320 nm), and a dermatologically acceptable carrier for the quantum dot nanocrystals. The present invention is further directed to photostable sunscreen and/or artificial tanning compositions including a material selected from metallic nanocrystals, multicomponent metal/metal nanocrystals, and alloyed metal nanocrystals, the metallic material having a surface plasmon resonance occurring sufficiently into the visible or infrared spectral region whereby broad absorption features due to electronic transitions, the broad absorption features located at higher energies, provide substantial broadband absorption properties of ultraviolet light at wavelengths across the range of both UV-A (320-400 nm) and UV-B (280-320 nm), and a dermatologically acceptable carrier for the metallic material.
Owner:LOS ALAMOS NATIONAL SECURITY

Multibit metal nanocrystal memories and fabrication

Metal nanocrystal memories are fabricated to include higher density states, stronger coupling with the channel, and better size scalability, than has been available with semiconductor nanocrystal devices. A self-assembled nanocrystal formation process by rapid thermal annealing of ultra thin metal film deposited on top of gate oxide is integrated with NMOSFET to fabricate such devices. Devices with Au, Ag, and Pt nanocrystals working in the F-N tunneling regime, with hot-carrier injection as the programming mechanism, demonstrate retention times up to 106s, and provide 2-bit-per-cell storage capability.
Owner:CORNELL RES FOUNDATION INC

Conductive carbon nanotubes dotted with metal and method for fabricating a biosensor using the same

Conductive carbon nanotubes (CNTs) obtained by dotting carboxylated CNTs with metal nanocrystals by chemical functional groups, are described, as well as a method for fabricating a pattern or film of the conductive CNTs which involves repeatedly depositing conductive CNTs on a substrate to achieve high surface density. A biosensor is described, in which bioreceptors that bind to target biomolecules are selectively attached to conductive CNTs or a conductive CNT pattern or film. By use of the conductive biosensor, various target biomaterials that bind or react with the bioreceptors can be precisely measured directly or by electrochemical signals at large amounts in one step. Additionally, the biosensor can be used for an electrical detection method capable of providing precise measurement results even with a small amount of source material.
Owner:KOREA ADVANCED INST OF SCI & TECH

Pd/UiO-66 catalyst having morphology-controllable Pd metal nanocrystal core and preparation method thereof

The invention relates to a Pd / UiO-66 catalyst having a morphology-controllable Pd metal nanocrystal core and a preparation method and application thereof. The preparation method of the Pd / UiO-66 catalyst comprises S1: dissolving terephthalic acid in dimethyl formamide to obtain a solution A, dissolving a palladium salt in dimethyl formamide to obtain a solution B and dissolving zirconium tetrachloride in dimethyl formamide to obtain a solution C for next use, S2: mixing the solutions A and B, carrying out stirring, mixing the mixture and the solution C and adding a small molecule acid into themixed solution, S3: sealing the mixed solution obtained by the step S2, carrying out heating along with stirring for 20-26h, after the reaction, carrying out centrifugation on the mixed solution andwashing and drying the centrifugal product to obtain the Pd / UiO-66 catalyst having a morphology-controllable Pd metal nanocrystal core. The Pd / UiO-66 catalyst obtained by the one step method has controllable Pd nanocrystal morphology and the morphology-controllable Pd nanoparticle is spherical or tetrahedral. The Pd / UiO-66 catalyst has a good UiO-66 crystalline state and a high specific surface area.
Owner:SUN YAT SEN UNIV

Method for manufacturing a memory device having a nanocrystal charge storage region

A method for manufacturing a memory device having a metal nanocrystal charge storage structure. A substrate is provided and a first layer of dielectric material is grown on the substrate. An absorption layer is formed on the first layer of dielectric material. The absorption layer includes a plurality of titanium atoms bonded to the first layer of dielectric material, a nitrogen atom bonded to each titanium atom, and at least one ligand bonded to the nitrogen atom. The at least one ligand is removed from the nitrogen atoms to form nucleation centers. A metal such as tungsten is bonded to the nucleation centers to form metallic islands. A dielectric material is formed on the nucleation centers and annealed to form a nanocrystal layer. A control oxide is formed over the nanocrystal layer and a gate electrode is formed on the control oxide.
Owner:SPANSION LLC

Multifunctional and multicoordinating amphiphilic polymer ligands for interfacing semiconducting, magnetic, and metallic nanocrystals with biological systems

ActiveUS20170058056A1Excellent long-term colloidal stabilityThin coatingNanomedicineNanosensorsComputational chemistryPolymer
The disclosure is directed to a set of multi-coordinating imidazole- and zwitterion-based ligands suited for surface-functionalizing quantum dots (QDs). The polymeric ligands are built using a one-step nucleophilic addition reaction between poly(isobutylene-alt-maleic anhydride) and distinct amine-containing functionalities.
Owner:FLORIDA STATE UNIV RES FOUND INC

P/N-type laminated resistive random access memory for growing metal nano crystal particles spontaneously

The invention discloses a P/N-type laminated resistive random access memory for growing metal nano crystal particles spontaneously. The P/N-type laminated resistive random access memory for growing metal nano crystal particles spontaneously is composed of a lower electrode, an induction layer I, an induction layer II and an upper electrode which are laminated sequentially. The lower electrode is metal which is easy to be oxidized into a metal ion under the forward electric field effect; the induction layer I is an N-type oxide; the induction layer Ii is a P-type oxide; the upper electrode is a metal or electric conducting compound with stable properties under the electric field effect; the lower electrode grows metal nanocrystalline particles spontaneously in the induction layer I under the forward electric field effect, becomes a lower resistor when a reverse bias voltage is added for the lower electrode, thus the operation of data '1' storage is carried out, and becomes a high resistor when a forward or reverse bias voltage is added for the lower electrode, thus the operation of data '0' storage is carried out. The P/N-type laminated resistive random access memory for growing metal nano crystal particles spontaneously provided by the invention has the advantages that the resistive random access memory acts as an induction factor of an electric conducting channel by utilizing metal nanocrystals; and the number of formed nanocrystals is controlled through the induction layer I, so that the vibration of the voltage and current of a device can be controlled effectively and the controllability of the access memory is improved.
Owner:TIANJIN UNIVERSITY OF TECHNOLOGY

Icosidodecahedron gold nanocrystal and controllable preparation method thereof

The invention discloses icosidodecahedron gold nanocrystal and a controllable preparation method thereof; the icosidodecahedron is composed of 8 low-crystal-face hexagonal sides and 24 high-crystal-face pentagonal sides, and each hexagonal side is provided with 6 pentagonal sides around; the controllable preparation method comprises: subjecting gold chloride (HAuCl4) to direct synthesis by one-step reduction of high-temperature reflux reduction method, with the cationic surfactant diallyldimethylammonium chloride (PDDA) as a protectant and morphological guide agent, and ethylene glycol (EG)/pentanediol (PD) as a solvent and reducing agent. The agents used herein are simple, easy to obtain, and green, the preparation method is simple and efficient and is highly repeatable, the yield of the prepared icosidodecahedron gold nanocrystal is higher than 95%, and the prepared icosidodecahedron gold nanocrystal has regular and unique morphology, good monodispersity and uniformly distributed particle size. The icosidodecahedron gold nanocrystal and the preparation method thereof are of important application value to the mass synthesis of multifaceted gold nanocrystal, and of important guide significance to the controllable synthetic preparation of other polyhedral noble metal nanocrystals.
Owner:INST OF OPTICS & ELECTRONICS - CHINESE ACAD OF SCI
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products