A multi-
abrasive tool is constituted by a support on which
abrasive elements are present. Such
abrasive elements are arranged in a manner so as to form one or more paths along which the successive abrasive elements have grain size sequentially increasing or decreasing by an arbitrary quantity when passing from on element to the next. Such principle gives rise to abrasive tools with different conformation both for
polishing machines and for grindstones. For roto-orbital and planetary
polishing machines, and optionally orbital, such support is circular and the grain sequence is circumferential, or radial, or in both directions. A first tool is constituted by contiguous (or non-contiguous) circular rings, that are differently abrasive. A second tool comprises differently abrasive elements arranged along the circular
peripheral edge. A third tool comprises differently abrasive elements arranged along a spiral path of 360° starting from the edge. A fourth tool comprises two 180° spiral paths with reversed roughness sequences. A fourth tool comprises pairs of differently abrasive small cylinders fixed to a plate on concentric circumferences. A fifth tool is obtained directly on the plate of the
polishing machine by means of reliefs and spacers for fixing differently abrasive sectors. For linear polishing machines, the abrasive support is a belt along which differently abrasive rectangular or oblique zones follow each other. For alternative polishing machines, the abrasive support is a plate shaped like the aforesaid belt. For tools to use with grindstones, the multi-abrasive element has a cylindrical
rotation symmetry, or conical with rounded tip, or spherical symmetry.