Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

229 results about "Dna microchips" patented technology

Probe designing apparatus and probe designing method

Where a DNA chip corresponding to a bacterium that is a subsequently added identification object is produced, temporal and pecuniary cost is reduced, and even where a probe unique to the DNA sequence of an identification object cannot be designed, precision in identifying DNA comprised in a sample is maximized. First, on designing a probe, a plurality of different probes are prepared to one kind of bacterium. Where some probes come to be not available by addition of bacteria that are new identification objects, identification is carried out using the remaining probes. Where a probe unique to an identification target bacterium cannot be designed, a probability of correct identification is increased by using multiple probes. Moreover, in consideration with a possibility that multiple kinds of bacteria simultaneously exist, a combination of probes that maximizes a probability of correct identification is selected.
Owner:HITACHI SOFTWARE ENG

Method of inspecting a DNA chip

A method of inspecting a DNA chip and an apparatus therefor that allow a picture to be reconstructed in the following steps: A plurality of irradiation spots are formed on a DNA probe array mounted on a stage. Then, the stage is displaced in X, Y directions so as to execute a scanning, thereby irradiating substantially all the entire surface of the DNA probe array. Next, a plurality of emitted fluorescent lights, which are generated from the plurality of irradiation spot portions on the DNA probe array, are converged and are then detected simultaneously by multi detectors. Finally, a data processing apparatus processes the detected signals, thereby reconstructing the picture.
Owner:HITACHI LTD

Methods and kits for negative selection of desired nucleic acid sequences

InactiveUS20080268508A1Contemplate useHormonesSugar derivativesReverse transcriptaseNucleotide
The present invention pertains to a method to isolate, separate, enrich or amplify a targeted nucleotide polymer such as mRNA through selective reverse transcription of the targeted polymer into cDNA from a sample comprising of chemically identical or similar polynucleotide polymers such as rRNA. The enrichment of the targeted nucleic acid such as mRNA is accomplished by blocking the reverse transcription of undesired rRNA while allowing unrestricted reverse transcription of the targeted polymer. The invention also embodies that the cleavage of the non-targeted nucleic acid such as rRNA bound to an oligonucleotide through enzymatic activity (RNase H). The invention further embodies methods and kits to accomplish the utility of the invention through the following steps 1) 3′ tailing of chemically identical or similar nucleotide polymers in a sample that includes bacterial mRNA 2) a 3′ tail capable of binding to a oligo-dN primer 3) at least one oligonucleotide capable of preventing the extension of oligo-dN bound to at least one non-targeted nucleotide polymers by a DNA polymerase such as a reverse transcriptase without restricting conversion of bacterial mRNA into cDNA 4) where the non-targeted molecule is prevented as a template for cDNA synthesis by enzymatic cleavage (RNase H) of template (rRNA)-oligonucleotide hybrid 5) where the reverse transcriptase is physically blocked by the oligonucleotide bound to the non-targeted nucleic acids such as rRNA 5) purification of the selectively transcribed cDNA. In further embodiments of the present invention, methods and composition to enable the study of bacterial transcriptomics-an analysis of genes expressed by a bacterial infection of a host, an isolated bacterial culture or a bacterial community, such as recovered from soil, intestine, mouth, biofilm, water etc are also included for use in DNA-chip or sequencing analyses.
Owner:SOWLAY MOHANKUMAR R

Methods for estimating probe cell locations in high-density synthetic DNA microarrays

InactiveUS6993173B2Easy to optimizeAccurate attributionImage enhancementImage analysisHigh-Density MicroarrayHigh density
Methods, systems, and computer program products for estimating the location of a probe cell in an image of a high-density microarray DNA chip interrogate a plurality of different closely spaced estimated locations to identify the most likely estimated location of the probe cell in the image.
Owner:DUKE UNIV

Composition and method for diagnosing esophageal cancer and metastasis of esophageal cancer

This invention relates to a composition, kit, or DNA chip comprising polynucleotides and antibodies as probes for detecting, determining, or predicting the presence or metastasis of esophageal cancer, and to a method for detecting, determining, or predicting the presence or metastasis of esophageal cancer using the same.
Owner:TORAY IND INC +1

Liquid barcode and liquid barcode reader

The inventive concept relates to a product authentication and identification device using a liquid barcode formed by liquid bars stored in liquid chambers. For example, according to the inventive concept liquid barcodes and a liquid barcode reader for reading liquid barcodes used for product authentication and identification of thin-film chemical analyzers such as a lab-on-a-disc and a bio disc in which bio chips such as a lab-on-a-chip, a protein chip, and a DNA chip for diagnosing and detecting a small amount of material in a fluid are integrated, a credit card, or other products can be provided.
Owner:SAMSUNG ELECTRONICS CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products