Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

42results about How to "Variation in quality" patented technology

Nonmagnetic Material Particle Dispersed Ferromagnetic Material Sputtering Target

Provided is a nonmagnetic material particle dispersed ferromagnetic material sputtering target comprising a material including nonmagnetic material particles dispersed in a ferromagnetic material. The nonmagnetic material particle dispersed ferromagnetic material sputtering target is characterized in that all particles of the nonmagnetic material with a structure observed on the material in its polished face have a shape and size that are smaller than all imaginary circles having a radius of 2 μm formed around an arbitrary point within the nonmagnetic material particles, or that have at least two contact points or intersection points between the imaginary circles and the interface of the ferromagnetic material and the nonmagnetic material. The nonmagnetic material particle dispersed ferromagnetic material sputtering target is advantageous in that, in the formation of a film by sputtering, the influence of heating or the like on a substrate can be reduced, high-speed deposition by DC sputtering is possible, the film thickness can be regulated to be thin, the generation of particles (dust) or nodules can be reduced during sputtering, the variation in quality can be reduced to improve the mass productivity, fine crystal grains and high density can be realized, and the nonmagnetic material particle dispersed ferromagnetic material sputtering target is particularly best suited for use as a magnetic recording layer.
Owner:JX NIPPON MINING& METALS CORP

Gas filled bodies

In a plastic tube (1) for the production of gas filled bodies, with two superimposed sheets, connected in a gas tight manner to each other along a first longitudinal edge thereof, the upper sheet (2) and the lower sheet (3) are welded together in the transverse direction along gas tight welded seams (5a,5b), arranged in pairs at a separation from each other, in order to form inflatable pockets (7), which seams extend from the first longitudinal edge (4) to a point at a predetermined separation from the opposing second longitudinal edge (6). The pockets each present, between the upper sheet and the lower sheet, a gas filling opening (8) which is accessible from the second longitudinal edge. Also proposed are a method for the production of gas filled bodies using such plastic tubes and a device for carrying out said method.
Owner:LORSCH JOHANNES

Method of controlling impurity doping and impurity doping apparatus

Disclosed here is a method of controlling a dose amount of dopant to be doped into object (1) to be processed in plasma doping. According to the method, the doping control is formed of the following processes: determining the temperature of object (1), the amount of ions having dopant in plasma that collide with object (1), and types of gases in plasma during doping; calculating a dose amount by neutral gas according to the temperature of object (1), and a dose amount by ions from the determined amount of ions containing dopant that collide with object (1); and carrying out doping so that the sum of the dose amount by neutral gas and the dose amount by ions equal to a predetermined dose amount.
Owner:PANASONIC CORP

Liquid crystal display apparatus

In a liquid crystal display apparatus having a backlight disposed behind a liquid crystal display panel 10, the liquid crystal display panel 10 has first and second substrates 11 and 21 disposed to face each other. The second substrate 21 has a common electrode 20 laid in a display area 12 thereon. The second substrate 21 further has a light-shielding inner black matrix 22 laid around the display area 12 and a light-shielding electrically insulated black matrix 22A, 22B, and 22C laid outside the inner black matrix 22 and electrically separated from the inner black matrix 22 and the common electrode 19. The liquid crystal display panel 10 is held, at the periphery thereof, by metal support frames 32 and 33.
Owner:SANYO ELECTRIC CO LTD +1

Automatic gain control apparatus

In an automatic gain control amplifier, an RF automatic gain controller controls the gain of a radio frequency signal. A frequency converter frequency-converts the radio frequency signal into an intermediate frequency signal. An IF automatic gain controller controls the gain of the intermediate frequency. A level detector detects a signal level of the gain-controlled intermediate frequency signal, and generates a level signal. An automatic gain control signal generator separately controls, based the level signal, the RF automatic gain controller and the IF automatic gain controller.
Owner:PANASONIC CORP +1

Nonmagnetic material particle dispersed ferromagnetic material sputtering target

Provided is a nonmagnetic material particle dispersed ferromagnetic material sputtering target comprising a material including nonmagnetic material particles dispersed in a ferromagnetic material. The nonmagnetic material particle dispersed ferromagnetic material sputtering target is characterized in that all particles of the nonmagnetic material with a structure observed on the material in its polished face have a shape and size that are smaller than all imaginary circles having a radius of 2 μm formed around an arbitrary point within the nonmagnetic material particles, or that have at least two contact points or intersection points between the imaginary circles and the interface of the ferromagnetic material and the nonmagnetic material. The nonmagnetic material particle dispersed ferromagnetic material sputtering target is advantageous in that, in the formation of a film by sputtering, the influence of heating or the like on a substrate can be reduced, high-speed deposition by DC sputtering is possible, the film thickness can be regulated to be thin, the generation of particles (dust) or nodules can be reduced during sputtering, the variation in quality can be reduced to improve the mass productivity, fine crystal grains and high density can be realized, and the nonmagnetic material particle dispersed ferromagnetic material sputtering target is particularly best suited for use as a magnetic recording layer.
Owner:JX NIPPON MINING & METALS CORP

Fixing Device

A nip member is disposed inside the endless belt and elongated in a longitudinal direction. A backup member sandwiches the endless belt against the nip member to form a nip portion at which the backup member and the endless belt are in contact with each other and configured to convey a recording sheet in a conveying direction perpendicular to the longitudinal direction. A downstream end of the nip portion in the conveying direction is arced with a longitudinal center portion thereof further upstream than longitudinal end portions thereof. The nip member includes a first portion sandwiching the endless belt against the backup member, and a second portion positioned downstream of the first portion in the conveying direction and bent in a direction away from the backup member. The second portion is arced with a longitudinal center portion thereof further upstream in the conveying direction than longitudinal end portions thereof.
Owner:BROTHER KOGYO KK

Method for measuring deviation of joint position of member and method for producing spark plug

In a method for measuring deviation of a ground electrode from an optimal igniting position, a metallic shell is engaged with a female thread jig. Then the axis O of the metallic shell, a predetermined first measuring point P1 and a predetermined second measuring point P2 on a front end face of the ground electrode are detected. Then, a circumferential angle β1 formed between a reference straight line “LS” connecting O to the optimal igniting position O1, and a first straight line L1 which connects O to P1 is measured, followed by a measurement of a circumferential angle β2 formed between LS and a second straight line L2 connecting O to P2 Thereafter, the deviation of the ground electrode from O1 is measured as a circumferential angle “α” between “LS” and a third straight line L3 connecting the axis O to the center C of the front end face.
Owner:NGK SPARK PLUG CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products