Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

430results about How to "Eliminate artifacts" patented technology

Methods and apparatuses for image guided medical procedures

Methods and apparatuses for the image guidance and documentation of medical procedures. One embodiment includes combining small field of view images into a recorded image of with a large field of view and aligning the small field of view real time image with the recorded image through correlation of imaging data. A location and orientation determination system may be used to track the imaging system and provide a starting set of image alignment parameters and / or provide change updates to a set of image alignment parameters, which is then further improved through correlating imaging data. The recorded image may be selected according to real time measurement of a cardiac parameter during an image guided cardiac procedure. Image manipulations planned based on the recorded image can be stored and applied to the real time information. The position of the medical device may be determined and recorded through manipulating a cursor in a 3-D image space shown in two non-parallel views.
Owner:ABBOTT CARDIOVASCULAR

Noise suppression based on Bark band weiner filtering and modified doblinger noise estimate

ActiveUS20050240401A1Slow time constantEliminate artifactSpeech analysisSignal-to-noise ratio (imaging)Frequency domain
In a noise suppresser, an input signal is converted to frequency domain by discrete Fourier analysis and divided into Bark bands. Noise is estimated for each band. The circuit for estimating noise includes a smoothing filter having a slower time constant for updating the noise estimate during noise than during speech. The noise suppresser further includes a circuit to adjust a noise suppression factor inversely proportional to the signal to noise ratio of each frame of the input signal. A noise estimate is subtracted from the signal in each band. A discrete inverse Fourier transform converts the signals back to the time domain and overlapping and combined windows eliminate artifacts that may have been produced during processing.
Owner:CIRRUS LOGIC INC

Image encoding using reordering and blocking of wavelet coefficients combined with adaptive encoding

An encoder reorders quantized wavelet coefficients to cluster large and small wavelet coefficients into separate groups without requiring the use of data-dependent data structures. The coefficients are then adaptively encoded based on a run-length code which continuously modifies a parameter that controls the codewords uses to represent strings of quantized coefficients, seeking to minimize the number of bits spent in the codewords. A matrix of indices contains the coarsest coefficients in the upper left corner, and filling in low high and high low sub bands in larger and larger blocks in an alternating manner, such that low high sub bands comprise the top of the matrix and the high low sub bands comprise the left side of the matrix. The shortest codewords are assigned to represent a run of the most likely character having length of 2k, where k is a parameter. k is adjusted based on successive characters being encountered. k is increased when the character is the same, and decreased when the character is different. A decoder applies the above in reverse order. Decoding of the encoded coefficients is first performed, followed by an unshuffling of the coefficients. The unshuffled coefficients are then subjected to an inverse wavelet transform to recover the transformed and compressed data, such as image pixels.
Owner:DYNADEX DATA LLC

Optical resonance analysis unit

An optical analysis unit especially suitable for performing grating coupled surface plasmon resonance (SPR) imaging features a pivoting light source capable of scanning through a range of angles of incident light projected onto a stationary target sensor, such as an SPR sensor. The reflected image from the illuminated sensor is detected, e.g., by a CCD camera and the image and angular scan data are processed, for example by a fitting algorithm, to provide real time analysis of reactions taking place on the surface of the sensor.
Owner:GE HEALTHCARE BIO SCI CORP

Method For Image Reconstruction Using Low-Dimensional-Structure Self-Learning and Thresholding

InactiveUS20120099774A1Improve reconstructionPromote reconstructionImage enhancementReconstruction from projectionImage resolutionPrincipal component pursuit
A method for reconstructing an image of a subject from undersampled image data that is acquired with an imaging system, such as a magnetic resonance imaging system or computed tomography system, is provided. From the acquired undersampled image data, an image of the subject is reconstructed and used to guide further image reconstruction. For example, a low resolution image is reconstructed from a portion of the undersampled image data, such as from a portion corresponding to the center of k-space when MRI is used. From this image, a number of similarity clusters are produced and processed. The processing may be by hard thresholding, Wiener filtering, principal component pursuit, or other similar techniques. These processed similarity clusters are then used to reconstruct a final, target image of the subject using, for example, a weighted average combination of the similarity clusters.
Owner:BETH ISRAEL DEACONESS MEDICAL CENT INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products