Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

58results about How to "Difference in level" patented technology

Device and method for generating X-rays having different energy levels and material discrimination system

Disclosed is a device and method for generating X-rays having different energy levels as well as a material discrimination system thereof. The method comprises the steps of: generating a first pulse voltage, a second pulse voltage, a third pulse voltage and a fourth pulse voltage, generating a first electron beam having a first beam load and a second electron beam having a second beam load, respectively, based on the first pulse voltage and second pulse voltage, generating a first microwave having a first power and a second microwave having a second power, respectively, based on the third pulse voltage and the fourth pulse voltage, accelerating the first and second electron beams respectively using the first and second microwave to obtain the accelerated first electron beam and the second electron beam, hitting a target with the accelerated first electron beam and the second electron beam to generate a first X-ray and a second X-ray having different energy levels. The X-rays having different energy levels generated by the present invention can be used in the non-destructive inspection for large-sized container cargo at places such as Customs, ports and airports, and in realizing the material discrimination for the inspected object.
Owner:TSINGHUA UNIV +1

Processing method of stacked-layer film and manufacturing method of semiconductor device

In a processing method of a stacked-layer film in which a metal film is provided on an oxide insulating film, plasma containing an oxygen ion is generated by applying high-frequency power with power density greater than or equal to 0.59 W / cm2 and less than or equal to 1.18 W / cm2 to the stacked-layer film side under an atmosphere containing oxygen in which pressure is greater than or equal to 5 Pa and less than or equal to 15 Pa, the metal film is oxidized by the oxygen ion, and an oxide insulating film containing excess oxygen is formed by supplying oxygen to the oxide insulating film.
Owner:SEMICON ENERGY LAB CO LTD

Device and method for generating x-rays having different energy levels and material discrimination system

Disclosed is a device and method for generating X-rays having different energy levels as well as a material discrimination system thereof. The method comprises the steps of: generating a first pulse voltage, a second pulse voltage, a third pulse voltage and a fourth pulse voltage, generating a first electron beam having a first beam load and a second electron beam having a second beam load, respectively, based on the first pulse voltage and second pulse voltage, generating a first microwave having a first power and a second microwave having a second power, respectively, based on the third pulse voltage and the fourth pulse voltage, accelerating the first and second electron beams respectively using the first and second microwave to obtain the accelerated first electron beam and the second electron beam, hitting a target with the accelerated first electron beam and the second electron beam to generate a first X-ray and a second X-ray having different energy levels. The X-rays having different energy levels generated by the present invention can be used in the non-destructive inspection for large-sized container cargo at places such as Customs, ports and airports, and in realizing the material discrimination for the inspected object.
Owner:TSINGHUA UNIV +1

Organic semicondutor element

The present invention relates to an organic semiconductor thin film suitably employed in electronics, photonics, bioelectronics, or the like, and a method for forming the same. The present invention further relates to a solution for an organic semiconductor used to form the organic semiconductor thin film and an organic semiconductor device using the organic semiconductor thin film. The transistor of the present invention is manufactured by forming sequentially a gate electrode (2), an insulator layer (3), a source electrode and drain electrode (4, 4) on a glass substrate (5), applying thereto a 0.05% (by mass) solution of pentacene in o-dichlorobenzene and drying the solution to form an organic semiconductor thin film (1). The present invention provides a transistor with superior electronic characteristics because the organic semiconductor thin film (1), which can be formed easily at low cost, is almost free of defects.
Owner:ASAHI KASEI KK

Substrate for use in a liquid crystal display and liquid crystal display using the same

The invention relates to a substrate for use in a liquid crystal display of a CF-on-TFT structure in which a color filter is formed on the side of an array substrate in which a switching element is formed, and has an object to provide a substrate for use in a liquid crystal display, which enables simplification of a manufacturing process typified by a photolithography process and has high reliability. The substrate for use in the liquid crystal display is constructed to include external connection terminals which include first terminal electrodes electrically connected to gate bus lines led out from a plurality of pixel regions arranged on a glass substrate in a matrix form, second terminal electrodes formed of forming material of a pixel electrode and directly on the glass substrate, and electrode coupling regions for electrically connecting the first and the second terminal electrodes, and which electrically connect an external circuit and the gate bus lines.
Owner:SHARP KK

Method of manufacturing semiconductor device and semiconductor device

Provided is a method of manufacturing a semiconductor device capable of adhering semiconductor elements and a support member for mounting semiconductor elements, such as lead frames, organic substrates or the like, even in a relatively low temperature range without damaging adhesion property and workability and of suppressing the occurrence of voids. The method of manufacturing a semiconductor device according to the invention is a method of manufacturing a semiconductor device comprising a semiconductor element and a support member adhered to the semiconductor element through a cured material of an adhesive film, wherein the method comprises the steps (a) to (d) in this order;
    • (a) preparing adhesive film-attached semiconductor elements;
    • (b) thermocompression-bonding said adhesive film-attached semiconductor elements to said support member so as to obtain a semiconductor part made of said adhesive film-attached semiconductor elements and said support member;
    • (c) heating and pressurizing said semiconductor part made of said adhesive film-attached semiconductor elements and said support member using a pressurized fluid so as to proceed with curing of adhesive film; and
    • (d) electrically connecting said adhesive film-attached semiconductor elements and said support member.
Owner:SUMITOMO BAKELITE CO LTD

Semiconductor device and method of manufacturing the same

A semiconductor device includes an element isolation insulating film, memory cell transistors formed in an element isolation region and having respective gate electrodes, and a stopper film for forming a contact, formed both on a sidewall of the gate electrode of each transistor and on the element isolation insulating film between the gate electrodes. A level difference is set between the upper surface of the element isolation insulating film and the upper surface of the semiconductor substrate in the element isolation region. The level difference is set so that a level difference between the gate electrodes is smaller than a level difference in the gate electrode. Furthermore, the surface of the semiconductor substrate in the drain contact formation region is located lower than the surface of the semiconductor substrate corresponding to the gate electrode.
Owner:KK TOSHIBA

Polishing compound and polishing method

To provide a polishing compound which can satisfy both high removal rate of an object to be polished and excellent property to eliminate the difference in level, and to provide a polishing method which can polish a wiring metal fast while suppressing increase of a wiring metal resistance and is excellent in the property to eliminate the difference in level.A polishing compound which comprises abrasive particles, an oxidizing agent, ammonium ions, polyvalent carboxylate ions, at least one chelating agent selected from the group consisting of pentaethylenehexamine, triethylenetetramine and tetraethylenepentamine, and an aqueous medium. Further, a polishing method of polishing a wiring metal 3 by using the polishing compound, after providing a wiring trench 2 on a resin substrate 1 and embedding the wiring metal 3 in the wiring trench 2.
Owner:ASAHI GLASS CO LTD +1

Semiconductor device including dummy gate part and method of fabricating the same

In a reliable semiconductor device and a method of fabricating the semiconductor device, a difference in height between upper surfaces of a cell region and a peripheral region (also referred to as a level difference) is minimized by optimizing dummy gate parts. The semiconductor device includes a semiconductor substrate including a cell region and a peripheral region surrounding the cell region, a plurality of dummy active regions surrounded by a device isolating region and formed apart from each other, and a plurality of dummy gate parts formed on the dummy active regions and on the device isolating regions located between the dummy active regions, wherein each of the dummy gate parts covers two or more of the dummy active regions.
Owner:SAMSUNG ELECTRONICS CO LTD

Semiconductor device having a chip bonding using a resin adhesive film and method of manufacturing the same

Provided is a method of manufacturing a semiconductor device capable of adhering semiconductor elements and a support member for mounting semiconductor elements, such as lead frames, organic substrates or the like, even in a relatively low temperature range without damaging adhesion property and workability and of suppressing the occurrence of voids. The method of manufacturing a semiconductor device according to the invention is a method of manufacturing a semiconductor device comprising a semiconductor element and a support member adhered to the semiconductor element through a cured material of an adhesive film, wherein the method comprises the steps (a) to (d) in this order;(a) preparing adhesive film-attached semiconductor elements;(b) thermocompression-bonding said adhesive film-attached semiconductor elements to said support member so as to obtain a semiconductor part made of said adhesive film-attached semiconductor elements and said support member;(c) heating and pressurizing said semiconductor part made of said adhesive film-attached semiconductor elements and said support member using a pressurized fluid so as to proceed with curing of adhesive film; and(d) electrically connecting said adhesive film-attached semiconductor elements and said support member.
Owner:SUMITOMO BAKELITE CO LTD

Processing method of stacked-layer film and manufacturing method of semiconductor device

In a processing method of a stacked-layer film in which a metal film is provided on an oxide insulating film, plasma containing an oxygen ion is generated by applying high-frequency power with power density greater than or equal to 0.59 W / cm2 and less than or equal to 1.18 W / cm2 to the stacked-layer film side under an atmosphere containing oxygen in which pressure is greater than or equal to 5 Pa and less than or equal to 15 Pa, the metal film is oxidized by the oxygen ion, and an oxide insulating film containing excess oxygen is formed by supplying oxygen to the oxide insulating film.
Owner:SEMICON ENERGY LAB CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products