Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

4294results about "Cutting machines" patented technology

Method for simulating drilling of roller cone bits and its application to roller cone bit design and performance

A method for simulating the drilling performance of a roller cone bit drilling an earth formation may be used to generate a visual representation of drilling, to design roller cone drill bits, and to optimize the drilling performance of a roller cone bit. The method for generating a visual representation of a roller cone bit drilling earth formations includes selecting bit design parameters, selecting drilling parameters, and selecting an earth formation to be drilled. The method further includes calculating, from the bit design parameters, drilling parameters and earth formation, parameters of a crater formed when one of a plurality of cutting elements contacts the earth formation. The method further includes calculating a bottomhole geometry, wherein the crater is removed from a bottomhole surface. The method also includes incrementally rotating the bit and repeating the calculating of crater parameters and bottomhole geometry based on calculated roller cone rotation speed and geometrical location with respect to rotation of said roller cone drill bit about its axis. The method also includes converting the crater and bottomhole geometry parameters into a visual representation.
Owner:SMITH INT INC

Bi-centered drill bit having improved drilling stability mud hydraulics and resistance to cutter damage

A bi-center drill bit includes pilot and reaming blades affixed to a body at azimuthally spaced locations. The blades have PDC cutters attached at selected positions. In one aspect, the pilot blades form a section having length along the bit axis less than about 80 percent of a diameter of the section. In another aspect, selected pilot blades and corresponding reaming blades are formed into single spiral structures. In another aspect, shapes and positions of the blades and inserts are selected so that lateral forces exerted by the reaming and the pilot sections are balanced as a single structure. Lateral forces are preferably balanced to within 10 percent of the total axial force on the bit. In another aspect, the center of mass of the bit is located less than about 2.5 percent of the diameter of the bit from the axis of rotation. In another aspect, jets are disposed in the reaming section oriented so that their axes are within about 30 degrees of normal to the axis of the bit. In another aspect, the reaming blades are shaped to conform to the radially least extensive, from the longitudinal axis, of a pass-through circle or a drill circle, so the cutters on the reaming blades drill at the drill diameter, without contact to the cutters on the reaming blades when the bit passes through an opening having about the pass-through diameter.
Owner:SMITH INT INC

Polycrystalline diamond materials having improved abrasion resistance, thermal stability and impact resistance

PCD materials comprise a diamond body having bonded diamond crystals and interstitial regions disposed among the crystals. The diamond body is formed from diamond grains and a catalyst material at high pressure / high temperature conditions. The diamond grains have an average particle size of about 0.03 mm or greater. At least a portion of the diamond body has a high diamond volume content of greater than about 93 percent by volume. The entire diamond body can comprise high volume content diamond or a region of the diamond body can comprise the high volume content diamond. The diamond body includes a working surface, a first region substantially free of the catalyst material, and a second region that includes the catalyst material. At least a portion of the first region extends from the working surface to depth of from about 0.01 to about 0.1 mm.
Owner:SMITH INT INC

Drillout bi-center bit

The present invention is a bi-center drill bit designed to drill out the cement and other material in the casing and then proceed to drill out the full gauge drilling diameter borehole with a diameter greater than the inside of the casing. The bi-center drill bit is configured with non-drilling bearing elements that contact with the casing when the bit is drilling the cement without allowing the gauge cutting elements of the bi-center drill bit to contact the casing. The bi-center drill bit also has a cutting element configuration which prevents reverse scraping of the cutting elements when drilling both the cement and the formation.
Owner:CAMCO INT

Excavation bit for a drilling apparatus

The invention provides an excavation bit, which is constructed from either a single or double carrier. If two carriers are present the carriers are contra-rotating. By the off setting of the axes of rotation of single or dual carriers from a longitudinal axis of the bit, and by driving to carriers to rotate, a ground engaging thrust is produced, as well as the rotation of the excavation bit in the ground as a consequence of the rotation of the carriers, and not vice versa as is the case with prior art. By the invention, there can result sufficient thrust on the bit, by the rotation of the carriers, so that the need to apply thrust down the bore via the drill rod is reduced or eliminated. As a result of the invention the number and or size of the ground engaging tools are not a function of the bore diameter to be drilled. Thus as the excavation bit is scaled up for larger diameter bores more ground engaging tools and or an increase in their size is not required. By the invention, thrust applied (either via the drill rod or from the rotation of the carriers) is thought to be, through a quasi lever system, multiplied at some of the ground engaging tools in the radial direction. That is the total thrust in the longitudinal axis direction (whether externally applied or resultant from the contra-rotation of the carriers), is multiplied so that the outward forces exerted (by the cutters onto the rock surface in the region approaching perpendicular to the longitudinal axis of the bore) is thought to be significantly higher than the magnitude of the total thrust.
Owner:MOLLOY ANTHONY
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products