Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

176results about How to "Manufactured using" patented technology

Protein kinase modulators and method of use

The present invention relates to chemical compounds having a general formula I wherein A, B, D, E, G, H1-5 and R1-4 are defined herein, and synthetic intermediates, which are capable of modulating various protein kinase receptor enzymes and, thereby, influencing various disease states and conditions related to the activities of these kinases. For example, the compounds are capable of modulating kinase enzymes thereby influencing the process of angiogenesis and treating angiogenesis-related diseases and other poliferative disorders, including cancer and inflammation. The invention also includes pharmaceutical compositions, including the compounds, and methods of treating disease states related to the activity of protein kinases.
Owner:AMGEN INC

Expansible yarns and threads, and products made using them

A precursor yarn or thread is made by passing a central element, e.g., a filament, a tow, or a flat member, through a bath of a binder, such as a low-temperature hot-melt adhesive, and aqueous urethane, or an acrylic material, with which is mixed a quantity of hard-shelled microspheres which expand when heated to a higher temperature. This is then covered by a sheath, e.g, of PVC, polyurethane, polyester, acrylic resin, polycarbonate, polypropylene, or polyethylene in a second bath. When this product is heated to a transition temperature which is characteristic of the microspheres chosen, the microspheres expand, swelling the sheath. Such a precursor could be woven into a fabric and then heated, so that as the yarn expands the fabric mesh becomes tighter, reducing its porosity. This would be useful as a yarn in making papermaker's felts. Heat-expansible threads made similarly would be useful in manufacture of shoes, sails, tents, clothing and other items where porosity is undesirable; that is, the product could be sewn together using the thread of the invention and then heat-treated, causing the thread to expand, sealing the holes made in sewing. Such threads would also be useful for decorative purposes, e.g., as embroidery yarns, and likely for other purposes. The yarns of the invention can also be disposed in a desired position and infused with a hardening resin while heat is applied to cause the microspheres to expand, forming a lightweight and stiff composite structure.
Owner:PASCALE INDS

Semiconductor device and manufacturing method thereof

To provide a semiconductor device that can be manufactured using a simple process without ensuring a high embedding property; and a manufacturing method of the device. In the manufacturing method of the semiconductor device according to the invention, a semiconductor substrate having a configuration obtained by stacking a support substrate, a buried insulating film, and a semiconductor layer in order of mention is prepared first. Then, an element having a conductive portion is completed over the main surface of the semiconductor layer. A trench encompassing the element in a planar view and reaching the buried insulating film from the main surface of the semiconductor layer is formed. A first insulating film (interlayer insulating film) is formed over the element and in the trench to cover the element and form an air gap in the trench, respectively. Then, a contact hole reaching the conductive portion of the element is formed in the first insulating film.
Owner:RENESAS ELECTRONICS CORP

Biodegradable polymer compositions, methods for making same and articles therefrom

A polymer composition includes a first component being a hydroxy-functional polymer, a second component being a natural polymer and a third component being a thermoplastic polyester. The first component, second component and third component are compounded to form a polymer composition.
Owner:US SEC AGRI +1

Water based adhesive composition with release properties

An aqueous adhesive composition with good release properties. A preferred embodiment comprises sodium lauryl sulfate and a modified tapioca dextrin.
Owner:HENKEL KGAA

High crystalline poly(lactic acid) filaments for material-extrusion based additive manufacturing

Provided is a new and better solution to the problems associated with the premature softening of PLA filaments in the additive manufacturing of three dimensional articles. It is based upon the finding that poly (lactic acid) filaments with high crystallinity offer much better resistance to heat-induced softening. The crystalline poly (lactic acid) filament can accordingly be used in the additive manufacturing of three dimensional articles without encountering the problems associated with premature softening, such as poor quality and printer jamming. The crystalline poly (lactic acid) filaments can also be used in additive manufacturing of three dimensional articles without compromising the quality of the ultimate product, reducing printing speed, increasing cost, or leading to increased printer complexity. It more specifically discloses a filament for use in three-dimensional printing which is comprised of crystalized poly (lactic acid), wherein said filament has a diameter which is within the range of 1.65 mm to 1.85 mm.
Owner:JF POLYMERS (SUZHOU) CO LTD

Curable composition having low coefficient of thermal expansion, method of making an integrated circuit, and an integrated circuit made there from

Disclosed is a curable composition having a low CTE. In one embodiment, a curable composition is disclosed that comprises (i) a binder comprising at least one epoxy compound of the structure: X—((CH2)m—(N)—((CH2)n-(Z))2)p wherein X is an aromatic ring or a six membered cycloaliphatic ring, m is from about 0 to about 2, n is from about 1 to about 3, Z is an epoxy group of empirical formula: C2H3O, p is a number from about 2 to about 3, and (ii) a cross-linking agent comprising at least one polyamine. This curable composition is characterized by a CTE of no more than 60 ppm / ° C. when cured for a time of from about 20 to about 60 minutes at temperature of from about 100 to 240° C. Also disclosed are methods of making integrated circuits and integrated circuits made there from, especially flip chips.
Owner:INTEL CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products