Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

280results about How to "Energy loss" patented technology

Charging of devices by microwave power beaming

A system for providing wireless, charging power and / or primary power to electronic / electrical devices is described whereby microwave energy is employed. Microwave energy is focused by a power transmitter comprising one or more adaptively-phased microwave array emitters onto a device to be charged. Rectennas within the device to be charged receive and rectify the microwave energy and use it for battery charging and / or for primary power. A locator signal generated by the device to be charged is analyzed by the system to determine the location of the device to be charged relative to the microwave array emitters, permitting the microwave energy to be directly specifically towards the device to be charged. Backscatter detectors respond to backscatter energy reflected off of any obstacle between the device to be charged and the microwave array emitters. Power to any obstructed microwave array emitter is reduced until the obstruction is removed. Optionally, data can be modulated onto microwave energy beams produced by the array emitters and demodulated by the device, thereby providing means of data communication from the power transmitter to the device. Similarly, data can be modulated onto the locator signal and demodulated in the power transmitter, thereby providing means of data communication from the device to the power transmitter.
Owner:NASA

Ladar Pulse Deconfliction Method

Disclosed herein are a number of example embodiments that employ controllable delays between successive ladar pulses in order to discriminate between “own” ladar pulse reflections and “interfering” ladar pulses reflections by a receiver. Example embodiments include designs where a sparse delay sum circuit is used at the receiver and where a funnel filter is used at the receiver. Also, disclosed are techniques for selecting codes to use for the controllable delays as well as techniques for identifying and tracking interfering ladar pulses and their corresponding delay codes. The use of a ladar system with pulse deconfliction is also disclosed as part of an optical data communication system.
Owner:AEYE INC

Centrifugal heat transfer engine and heat transfer systems embodying the same

A heat transfer engine having cooling and heating modes of reversible operation, in which heat can be effectively transferred within diverse user environments for cooling, heating and dehumidification applications. The heat transfer engine of the present invention includes a rotor structure which is rotatably supported within a stator structure. The stator has primary and secondary heat exchanging chambers in thermal isolation from each other. The rotor has primary and secondary heat transferring portions within which a closed fluid flow circuit is embodied. The closed fluid flow circuit within the rotor has a spiraled fluid-return passageway extending along its rotary shaft, and is charged with a refrigerant which is automatically circulated between the primary and secondary heat transferring portions of the rotor when the rotor is rotated within an optimized angular velocity range under the control of a temperature-responsive system controller. During the cooling mode of operation, the primary heat transfer portion of the rotor carries out an evaporation function within the primary heat exchanging chamber of the stator structure, while the secondary heat transfer portion of the rotor carries out a condenser function within the secondary heat exchanging chamber of the stator. During the cooling mode of operation, a vapor-compression refrigeration process is realized by the primary heat transfer portion of the rotor performing an evaporation function within the primary heat exchanging chamber of the stator structure, while the secondary heat transfer portion of the rotor performs a condenser function within the secondary heat exchanging chamber of the stator. During the heating mode of operation, a vapor-compression refrigeration process is realized by the primary heat transfer portion of the rotor performing a condenser function within the primary heat exchanging chamber of the stator structure, while the secondary heat transfer portion of the rotor performs an evaporation function within the secondary heat exchanging chamber of the stator. By virtue of the present invention, a technically feasible heat transfer engine is provided which avoids the need for conventional external compressors, while allowing the use of environmentally safe refrigerants. Various embodiments of the heat transfer engine are disclosed, in addition to methods of manufacture and fields and applications of use.
Owner:KELIX HEAT TRANSFER SYST

CVD reactor with energy efficient thermal-radiation shield

A Siemens type CVD reactor device is provided. One or more radiation shields are disposed between a rod filament and a cooled wall in the reactor. The radiation shield absorbs radiant heat emanating from the heated polysilicon rod during the CVD process, gets heated above 400° C., re-radiate the absorbed heat toward both of the polysilicon rod and the cooled wall, so as to provide thermal shielding effect to the cooled wall. The net energy loss of the polysilicon rod is reduced as much as the amount of energy emitted toward the polysilicon rod from the radiation shield, such that considerable amount of electrical energy of the CVD reactor is reduced and saved. The energy reduction rate goes up much higher if using multiple layered radiation shields, low shielding emissivity, and low thermal conductivity together. The purity of the manufactured polysilicon can be maintained by using thermal shielding material that is stable in a high temperature such as graphite, silicon carbide-coated graphite, and silicon.
Owner:WOONGJIN POLYSILICON

Electronic component connection support structures including air as a dielectric

Electronic component supporting mediums includes dielectric support material having voids adapted to include the use of air as a dielectric, which is commonly used in printed circuit boards and electrical connectors. The support medium provides physical support to conductive connections and a mechanical structure to enable electrical connections between electronic components. Support structures including air as a dielectric can be provided in the form of printed circuit boards and electrical connectors. The printed circuit board of claim 16 wherein said dielectric material comprises a low loss material. The support medium can comprise a low loss material such as air, FR-4, Teflon material, and plastic.
Owner:BELL SEMICON LLC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products