Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1294results about "Preparation by oxygen reduction" patented technology

Methods and apparatus for selectively producing ethanol from synthesis gas

The invention provides methods and apparatus for selectively producing ethanol from syngas. As disclosed herein, syngas derived from cellulosic biomass (or other sources) can be catalytically converted into methanol, which in turn can be catalytically converted into acetic acid or acetates. Finally, the acetic acid or acetates can be reduced to ethanol according to several variations. In some embodiments, yields of ethanol from biomass can exceed 100 gallons per dry ton of biomass.
Owner:CELANESE INT CORP

Hydrogenolysis of 6-carbon sugars and other organic compounds

Methods for hydrogenolysis are described which use a Re-containing multimetallic catalyst for hydrogenolysis of both C—O and C—C bonds. Methods and compositions for reactions of hydrogen over a Re-containing catalyst with compositions containing a 6-carbon sugar, sugar alcohol, or glycerol are described. It has been surprisingly discovered that reaction with hydrogen over a Re-containing multimetallic catalyst resulted in superior conversion and selectivity to desired products such as propylene glycol.
Owner:MICHIGAN STATE UNIV +1

Method for producing alcohols by hydrogenation of carbonyl compounds

A method for preparation of alcohols by catalytic hydrogenation of carbonyl compounds with hydrogen or hydrogen-containing gases in the presence of a hydrogenation catalyst of Raney type, where the catalyst is used in the form of hollow bodies, Preferred as catalytically active components are nickel, cobalt, copper, iron, platinum, palladium or ruthenium.
Owner:DEGUSSA AG

Method of producing lower alcohols from glycerol

A reactive-separation process converts glycerin into lower alcohols, having boiling points less than 200° C., at high yields. Conversion of natural glycerin to propylene glycol through an acetol intermediate is achieved at temperatures from 150° to 250° C. at a pressure ranging from 1 and 25 bar. The preferred applications of the propylene glycol are as an antifreeze, deicing compound, or anti-icing compound. The preferred catalyst for this process in a copper-chromium powder.
Owner:RENEWABLE ALTERNATIVES LLC +1

Method for producing ethylene glycol and 1,2-propylene glycol through continuous hydrocrackin of sugars

The invention relates to a continuous reaction process flow for producing ethylene glycol and 1, 2-propylene glycol through continuous hydrocrackin of sugars and provides a method for producing the ethylene glycol and the 1,2-propylene glycol through continuous hydrocrackin of sugars. In the process flow, sugars (comprising one or more than two of sugar, glucose, fructose, xylose, soluble xylo-oligosaccharide and starch) are hydrocracked in the presence of a catalyst in a reactor and the hydrocracked product enters a separating system. Hydrogen gas in a gas phase is recycled by separating and recovering; a liquid phase product partially reflows to the reactor and other liquid phase products are refined and separated to form the ethylene glycol, the propylene glycol and other polyhydric alcohols; and concentrated soluble catalyst components in the refined and separated residual component liquid phase are partially returned to the reactor.
Owner:DALIAN INST OF CHEM PHYSICS CHINESE ACAD OF SCI

Efficient and selective conversion of carbon dioxide to methanol, dimethyl ether and derived products

ActiveUS20060235091A1Minimize or eliminate the disadvantages or dangers inherentElectrolysis componentsCarbon compoundsHydrogenFlue gas
An environmentally beneficial method of producing methanol from varied sources of carbon dioxide including flue gases of fossil fuel burning powerplants, industrial exhaust gases or the atmosphere itself. Converting carbon dioxide by electrochemical reduction produces formic acid acid and some formaldehyde and methanol mixtures. The formic acid can be used as source of carbon as well as hydrogen to produce methanol, dimethyl ether and other products.
Owner:UNIV OF SOUTHERN CALIFORNIA

Methods for hydrothermal digestion of cellulosic biomass solids in the presence of a slurry catalyst and a digestible filter aid

Digesting cellulosic biomass in the presence of a slurry catalyst may reduce degradation product formation, but catalyst distribution and retention can be problematic. Digestion methods can comprise: providing cellulosic biomass solids and a slurry catalyst capable of activating molecular hydrogen in a digestion unit; providing a digestible filter aid in the digestion unit; distributing the slurry catalyst within the cellulosic biomass solids using fluid flow; retaining at least a portion of the slurry catalyst in a fixed location using the digestible filter aid; heating the cellulosic biomass solids in the presence of the slurry catalyst, a digestion solvent, and molecular hydrogen, thereby forming a liquor phase comprising soluble carbohydrates; and performing a catalytic reduction reaction on the soluble carbohydrates within the digestion unit, thereby at least partially forming a reaction product comprising a triol, a diol, a monohydric alcohol, or any combination thereof in the digestion unit.
Owner:SHELL USA INC

Hydrothermal hydrocatalytic treatment of biomass

A method of hydrothermal hydrocatalytic treating biomass is provided. Lignocellulosic biomass is treated with a digestive solvent to form a pretreated biomass containing soluble carbohydrates. The pretreated biomass is contacted, with hydrogen at a temperature in the range of 150° C. to less than 300° C. in the presence of a pH buffering agent and a supported hydrogenolysis catalyst containing (a) sulfur, (b) Mo or W, and (c) Co, Ni or mixture thereof, incorporated into a suitable support, to form a plurality of oxygenated hydrocarbons.
Owner:SHELL OIL CO

Selective oxidative conversion of methane to methanol, dimethyl ether and derived products

ActiveUS20060235088A1Minimize or eliminate the disadvantages or dangers inherentPreparation by oxidation reactionsElectrolysis componentsFormate EstersDimethyl ether
The present invention relates to a method of producing methanol from a methane source by oxidizing methane under conditions sufficient to a mixture of methanol and formaldehyde while minimizing the formation of formic acid and carbon dioxide. The oxidation step is followed by treatment step in which formaldehyde is converted into methanol and formic acid which itself can further be converted into methanol via catalytic hydrogenation of intermediately formed methyl formate.
Owner:UNIV OF SOUTHERN CALIFORNIA

Methods and systems for processing lignin during hydrothermal digestion of cellulosic biomass solids

Digestion of cellulosic biomass solids may be complicated by release of lignin therefrom. Methods for digesting cellulosic biomass solids may comprise: providing cellulosic biomass solids in a digestion solvent; at least partially converting the cellulosic biomass solids into a phenolics liquid phase comprising lignin, an aqueous phase comprising an alcoholic component derived from the cellulosic biomass solids, and an optional light organics phase; combining at least the phenolics liquid phase and the aqueous phase with one another, thereby forming a combined phase; and separating at least a portion of the alcoholic component from at least a portion of the combined phase.
Owner:SHELL OIL CO

Methods for production and processing of a glycol reaction product obtained from hydrothermal digestion of cellulosic biomass solids

Hydrothermal digestion of cellulosic biomass solids may be conducted such that a glycol reaction product is formed for subsequent processing. Processing of a glycol reaction product may include a drying operation conducted prior to condensation of the glycol reaction product into higher molecular weight compounds. Methods for digesting cellulosic biomass solids to form a glycol reaction product can comprise: providing cellulosic biomass solids and a slurry catalyst in a hydrothermal digestion unit, the slurry catalyst being capable of activating molecular hydrogen; heating the cellulosic biomass solids in the hydrothermal digestion unit in the presence of the slurry catalyst, a digestion solvent, and molecular hydrogen, thereby forming a liquor phase comprising soluble carbohydrates; and performing a first catalytic reduction reaction on the soluble carbohydrates within the hydrothermal digestion unit, thereby at least partially converting the soluble carbohydrates into a reaction product comprising a glycol.
Owner:SHELL OIL CO

Method and Systems for Procesing Lignin During Hydrothermal Digestion of Cellulosic Biomass Solids While Producing a Monohydric Alcohol Feed

Digestion of cellulosic biomass solids may be complicated by release of lignin therefrom. Methods for digesting cellulosic biomass solids may comprise: providing cellulosic biomass solids in the presence of a digestion solvent, molecular hydrogen, and a slurry catalyst capable of activating molecular hydrogen; at least partially converting the cellulosic biomass solids into a phenolics liquid phase comprising lignin, an aqueous phase comprising a glycol derived from the cellulosic biomass solids, and an optional light organics phase; wherein at least a portion of the slurry catalyst accumulates in the phenolics liquid phase as it forms; combining the glycol with the phenolics liquid phase, thereby forming a combined phase; and heating the combined phase in the presence of molecular hydrogen; wherein heating the combined phase reduces the viscosity of the phenolics liquid phase and transforms at least a portion of the glycol into a monohydric alcohol.
Owner:SHELL OIL CO

Aldehyde and alcohol compositions derived from seed oils

An aldehyde composition derived by hydroformylation of a transesterified seed oil and containing a mixture of formyl-substituted fatty acids or fatty acid esters having the following composition by weight: greater than about 10 to less than about 95 percent monoformyl, greater than about 1 to less than about 65 percent diformyl, and greater than about 0.1 to less than about 10 percent triformyl-substituted fatty acids or fatty acid esters, and having a diformyl to triformyl weight ratio of greater than about 5 / 1; preferably, greater than about 3 to less than about 20 percent saturates; and preferably, greater than about 1 to less than about 20 percent unsaturates. An alcohol composition derived by hydrogenation of the aforementioned aldehyde composition, containing a mixture of hydroxymethyl-substituted fatty acids or fatty acid esters having the following composition by weight: greater than about 10 to less than about 95 percent monoalcohol {mono(hydroxymethyl)}, greater than about 1 to less than about 65 percent diol {di(hydroxymethyl)}, greater than about 0.1 to less than about 10 percent triol, tri(hydroxmethyl)-substituted fatty acids or fatty acid esters; preferably greater than about 3 to less than about 35 percent saturates; and preferably, less than about 10 percent unsaturates. The alcohol composition can be converted into an oligomeric polyol for use in the manufacture of polyurethane slab stock flexible foams.
Owner:DOW GLOBAL TECH LLC

Manufacture of Purified Alcohols

Acetals are formed from an aldehyde hydrogenation product mixture comprising alcohols and at most 2% of alde-hydes and the product is distilled to yield purified alcohols and a second stream containing acetals and / or unsaturated ethers.
Owner:EXXONMOBIL CHEM PAT INC

Efficient and selective conversion of carbon dioxide to methanol, dimethyl ether and derived products

ActiveUS7605293B2Minimize or eliminate the disadvantages or dangers inherentElectrolysis componentsCarbon compoundsHydrogenFlue gas
An environmentally beneficial method of producing methanol from varied sources of carbon dioxide including flue gases of fossil fuel burning powerplants, industrial exhaust gases or the atmosphere itself. Converting carbon dioxide by electrochemical reduction produces formic acid acid and some formaldehyde and methanol mixtures. The formic acid can be used as source of carbon as well as hydrogen to produce methanol, dimethyl ether and other products.
Owner:UNIV OF SOUTHERN CALIFORNIA

Synthesis of biolubricant esters from unsaturated fatty acid derivatives

The present invention is generally directed to diester-based lubricant compositions comprising one or more isomeric mixtures of diester species. The present invention is also directed to methods of making these and other similar lubricant compositions. In some embodiments, the methods for making such diester-based lubricants utilize a biomass precursor material from which mono-unsaturated free lipid species can be provided or otherwise generated, wherein such mono-unsaturated free lipid species arc converted to isomeric diol species en route to the synthesis of diester species for use as / in the diester-based lubricant compositions.
Owner:CHEVROU USA INC

Process for a cyclohexanedimethanol using raney metal catalysts

Disclosed is a process for a cyclohexanedimethanol by hydrogenation of a cyclohexane-dicarboxylate ester in the presence of a Raney metal catalyst doped with rhenium. The process is useful for the reparation of 1,4-cyclohexanedimethanol from dialkyl esters of 1,4-cyclohexanedicarboxylate or dialkyl terephthalates. When Raney nickel is used as the catalyst, the process produces CHDM having a high trans content.
Owner:EASTMAN CHEM CO

Method for producing ethylene glycol from polyhydroxy compound

A method for producing ethylene glycol, including (a) adding a polyhydroxy compound and water to a sealed high-pressure reactor, (b) removing air and introducing hydrogen, and (c) allowing the polyhydroxy compound to react in the presence of a catalyst while stiffing. The catalyst includes a first active ingredient and a second active ingredient. The first active ingredient includes a transition metal of Group 8, 9, or 10 selected from iron, cobalt, nickel, ruthenium, rhodium, palladium, iridium, and platinum, and / or a mixture thereof. The second active ingredient includes a metallic state of molybdenum and / or tungsten, or a carbide, nitride, or phosphide thereof. The method is carried out at a hydrogen pressure of 1-12 MPa, at a temperature of 120-300° C. for not less than 5 min in a one-step catalytic reaction. The efficiency, selectivity, and the yield of ethylene glycol are high. The preparation process is simple and the materials used are renewable.
Owner:DALIAN INST OF CHEM PHYSICS CHINESE ACAD OF SCI

Methods for preparing ethylene glycol from polyhydroxy compounds

This invention provides methods for producing ethylene glycol from polyhydroxy compounds such as cellulose, starch, hemicellulose, glucose, sucrose, fructose, fructan, xylose and soluble xylooligosaccharides. The methods uses polyhydroxy compounds as the reactant, a composite catalyst having active components comprising one or more transition metals of Groups 8, 9, or 10, including iron, cobalt, nickel, ruthenium, rhodium, palladium, iridium, and platinum, as well as tungsten oxide, tungsten sulfide, tungsten hydroxide, tungsten chloride, tungsten bronze oxide, tungsten acid, tungstate, metatungstate acid, metatungstate, paratungstate acid, paratungstate, peroxotungstic acid, pertungstate, heteropoly acid containing tungsten. Reacting at a temperature of 120-300° C. and a hydrogen pressure of 1-13 MPa under hydrothermal conditions to accomplish one-step catalytic conversion. It realizes efficient, highly selective, high yield preparation of ethylene glycol and propylene glycol from polyhydroxy compounds. The advantage of processes disclosed in this invention include renewable raw material and high atom economy. At the same time, compared with other technologies that converts biomass raw materials into polyols, methods disclosed herein enjoy advantages including simple reaction process, high yield of targeted products, as well as easy preparation and low cost for the catalysts.
Owner:DALIAN INST OF CHEM PHYSICS CHINESE ACAD OF SCI

Tungsten carbide catalysts, their preparation and application in synthesis of ethylene glycol from cellulose

Tungsten carbide catalysts are used in preparation of ethylene glycol by hydrogenating degradation of cellulose. The catalyst includes tungsten carbide as main catalytic active component, added with small amount of one or more transition metals such as nickel, cobalt, iron, ruthenium, rhodium, palladium, osmium, iridium, platinum, and copper as the second metal, supported on one or more porous complex supports such as active carbon, alumina, silica, titanium dioxide, silicon carbide, zirconium oxide, for conversion of cellulose to ethylene glycol. The catalyst realizes high efficiency, high selectivity, and high yield in the conversion of cellulose to ethylene glycol at the temperature of 120-300° C., hydrogen pressure of 1-10 MPa, and hydrothermal conditions. Compared to the existing industrial synthetic method of ethylene glycol using ethylene as feedstock, the invention has the advantages of using renewable raw material resources, environment friendly process, and excellent atom economy.
Owner:DALIAN INST OF CHEM PHYSICS CHINESE ACAD OF SCI
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products