A method of making a novel composition of a porous medium comprising volume elements of both voids and pores wherein the voids are much larger than the mean size of the pores. The method includes a first step of preparation of a porous medium comprising solid particles the approximate size selected for the voids and pores as volume elements and a second step of removing the particles by etching out with hydrofluoric acid or other means to form a porous medium comprising both voids and pores. In another embodiment, the voids are prepared from Bow etching out of a polymeric hydrogel silica particles which were allowed to self-assemble as a crystalline colloidal array prior to formation of the polymeric hydrogel around them, thereby forming a porous medium containing a crystalline colloidal array of voids containing aqueous solution. In another embodiment, a method of partitioning macromolecules between a solution comprising the macromolecules, and the voids and pores of a porous medium. The method includes partitioning of macromolecules between voids, pores and the adjacent solution as used in chromatography, electrophoresis, filtration, extraction, other separation process, drug delivery devices, timed-release devices, and semi-homogeneous catalytic reactors. In another embodiment, a method of using Bragg diffraction for detection and monitoring partitioning of macromolecules in the voids comprised in a porous medium comprising a crystalline colloidal array of voids which are much larger than the mean pore size of the medium.