Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1154results about "Dosimeters" patented technology

Safety indicator and method

A safety indicator monitors environment conditions detrimental to humans e.g., hazardous gases, air pollutants, low oxygen, radiation levels of EMF or RF and microwave, temperature, humidity and air pressure retaining a three month history to upload to a PC via infra red data interface or phone link. Contaminants are analyzed and compared to stored profiles to determine its classification and notify user of an adversity by stored voice messages from, via alarm tones and associated flashing LED, via vibrator for silent operation or via LCD. Environmental radiation sources are monitored and auto-scaled. Instantaneous radiation exposure level and exposure duration data are stored for later readout as a detector and dosimeter. Scans for EMF allow detection with auto scaling of radiation levels and exposure durations are stored for subsequent readout. Electronic bugs can be found with a high sensitivity EMF range setting. Ambient temperature measurements or humidity and barometric pressure can be made over time to predict weather changes. A PCS RF link provides wireless remote communications in a first responder military use by upload of alarm conditions, field measurements and with download of command instructions. The link supports reception of telemetry data for real time remote monitoring of personnel via the wrist band for blood pressure, temperature, pulse rate and blood oxygen levels are transmitted. Commercial uses include remote environmental data collection and employee assignment tasking. GPS locates personnel and reporting coordinates associated with alarm occurrences and associated environmental measurements.
Owner:NTCG

Deterministic computation of radiation doses delivered to tissues and organs of a living organism

Various embodiments of the present invention provide methods and systems for deterministic calculation of radiation doses, delivered to specified volumes within human tissues and organs, and specified areas within other organisms, by external and internal radiation sources. Embodiments of the present invention provide for creating and optimizing computational mesh structures for deterministic radiation transport methods. In general these approaches seek to both improve solution accuracy and computational efficiency. Embodiments of the present invention provide methods for planning radiation treatments using deterministic methods. The methods of the present invention may also be applied for dose calculations, dose verification, and dose reconstruction for many different forms of radiotherapy treatments, including: conventional beam therapies, intensity modulated radiation therapy (“IMRT”), proton, electron and other charged particle beam therapies, targeted radionuclide therapies, brachytherapy, stereotactic radiosurgery (“SRS”), Tomotherapy®; and other radiotherapy delivery modes. The methods may also be applied to radiation-dose calculations based on radiation sources that include linear accelerators, various delivery devices, field shaping components, such as jaws, blocks, flattening filters, and multi-leaf collimators, and to many other radiation-related problems, including radiation shielding, detector design and characterization; thermal or infrared radiation, optical tomography, photon migration, and other problems.
Owner:TRANSPIRE

Wireless, motion and position-sensing, integrating radiation sensor for occupational and environmental dosimetry

Described is a radiation dosimeter including multiple sensor devices (including one or more passive integrating electronic radiation sensor, a MEMS accelerometers, a wireless transmitters and, optionally, a GPS, a thermistor, or other chemical, biological or EMF sensors) and a computer program for the simultaneous detection and wireless transmission of ionizing radiation, motion and global position for use in occupational and environmental dosimetry. The described dosimeter utilizes new processes and algorithms to create a self-contained, passive, integrating dosimeter. Furthermore, disclosed embodiments provide the use of MEMS and nanotechnology manufacturing techniques to encapsulate individual ionizing radiation sensor elements within a radiation attenuating material that provides a “filtration bubble” around the sensor element, the use of multiple attenuating materials (filters) around multiple sensor elements, and the use of a software algorithm to discriminate between different types of ionizing radiation and different radiation energy.
Owner:LANDAUER INC

Disposable single-use external dosimeters for use in radiation therapies

Methods, systems, devices, and computer program products include positioning disposable single-use radiation sensor patches that have adhesive means onto the skin of a patient to evaluate the radiation dose delivered during a treatment session. The sensor patches are configured to be minimally obtrusive and operate without the use of externally extending power chords or lead wires.
Owner:VTQ IP HLDG

Low cost digital pocket dosemeter

The invention relates to a pocket type digital radiation dosemeter comprising of a detector, which converts the ionisation in the detector caused by the incidence of ionising radiation of certain energy range into electrical impulses, a low power pulse amplifier, that amplifies the electrical pulses from the detector to detectable amplitudes, a discriminator circuit, that is used to reject pulses of origin other than those caused by the ionising radiation, a programmable divider circuit for calibrating the dosemeter, an electronic counting circuit and a six digit LCD display. The sensitivity of the dosemeter is 1 count per μSv (micro Sievert) and the accuracy is within ±15% from 60 keV to 1.25 Mev of X or Gamma radiation. A metallic energy compensation filter and a discriminator threshold modulation circuit are used to provide uniform response within ±15% from 60 KeV to 1.25 MeV. The Digital display indicates at any instant the total X or Gamma radiation dose, in μSv, received by the dosemeter since the time at which the dosemeter was switched on. The dosemeter is designed for very low power consumption and is powered by two coin type Li batteries (Type CR2320). It is capable of over 500 hours of continuous operation before having to replace the batteries. A blinking LED indicates low battery condition when 8 hours of battery life is still left. The entire circuitry and the battery holder are mounted on a single printed circuit board. Surface mount components are used to make the unit compact. The dosemeter is compact (110 mm L×30 mm W×14 mm H excluding Clip) and light in weight (60 gm).
Owner:DEPT OF ATOMIC ENERGY

Radioactive source on-line monitoring system based on Internet of Things technology

The invention provides a radioactive source on-line monitoring system based on an Internet of Things technology. The radioactive source on-line monitoring system comprises RF (radio frequency) cards, field monitoring terminals, a transmission network and an on-line monitoring informatization management platform, wherein the RF card is fixedly arranged in each monitoring site with a preset distance from a radiation source, unique identity information of a radiation source, approved geographical position information and the standard radiation dose rate are stored in the RF cards, each field monitoring terminal is arranged in the corresponding monitoring site, and comprises an RF card reader-writer, a radiation dose rate measuring instrument, video collecting equipment, a GPS (global positioning system) positioning device, a controller, an in-site warning device, a communication interface and a power supplying power supply, and the processor is respectively connected with the RF card reader-writer, the radiation dose rate measuring instrument, the video collecting equipment, the GPS positioning device, the field warning device, the communication interface and the power supplying power supply. The radioactive source on-line monitoring system has the advantages that the radiation source can be comprehensively monitored, then, through a communication network, the monitoring information can be remotely obtained in time, and the monitoring efficiency is effectively improved.
Owner:ZHEJIANG SOS TECH

Method and apparatus for validation of sterilization process

An apparatus, system and method for verifying the achievement of a desired sterility assurance level (SAL) for components manipulated within a low-energy electron beam sterilization chamber. The components are preferably pre-sterilized and connected together in an assembly fashion which creates and maintains the sterility of the connection by subjecting the components to low-energy (less than 300 KeV) electron beam radiation. The verification is completed by measuring the sterilization dose delivered to a sensor, also known as a dosimeter, positioned within the sterilization process to simulate the components.
Owner:BAXTER INT INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products